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| ntroduction

Numerical methods: Time dependent simulations of the dimensionless (2D)
Gross- Pitaevskii equation was perfor med using the Crank-Nicholson

algorithn
: model of dissipation in atomic BEC [1]
. wave function oW h2

: chemical potential (i-Yh—=|-—0° +V, + g|L|J|2 _

: coupling constan t
Vtr trapping potential Ve () = Emwé{ + fxg +(1+ gv)yz}
We describe thdynamic of the condensate without (| ) andwith (11 ) dissipation, .
We want to model interaction with thermal cloud in a simple way with the help of

modified GPE
1) y=0,theenergiesareconstant 2) y#0, theenergiesare not constant
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Case I:
No Dissipation:y = 0, Vortex — Antivortex Pair

@ With help of simulations, we describe the x- and y-coordinates of the vortices and
the radius of their trgjectory

@In our study, we use asingle vortex and vortex-antivortex pairs
a@For y = 0, the vortex movesin acircular trgjectory

@This motion isaresult of the non-uniform density of the condensate
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Case Il
With Dissipationy, Vortex — Antivortex Pair (a Single Vorte

Trajectory for asingle vortexfor
x =0.9and
y:0; 0.01; 0.07 and 0.1

Trajectory of one of the vortices
from the vortex pair for d = 1.8and
y: 0; 0.01; 0.07 and 0.1




Case Il: Motion of vortex — antivortex pair with
Initial separation distance, g= 2.86 and
dissipationy = 0.003
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Connectionbetween the dissipationy and the
friction coefficients « and &’

Friction coefficient « and & for asingle vortexwith
initial position x,= 0.9
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Connection between the dissipatignand the
friction coefficients ¢ and &’

We convert the dissipation which haas its origin from a model of a thermal
cloud intoa anda’, which have their origin from the vortex dynamics’s
friction coefficients

We use the Schwarz’s equation [2], which in our case is:

r —_ — —_—

=Vy —a zZXVg +a zZ X|zxvy

dt

The motion of a single vortex with initial positiony< 0.9

For the first circle like trajectory:
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Motion of rndom vortex-antivortex pairs placed
In the condensate with initial separation distanced, = 1.8
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Snapshots of the motion of vortex-antivortex pairsdn
formation of a mini turbulent system

Randomvortex —anti vorteyairs put in the condensate for dissipation,y = 0.003
We have informationabout the vortex and anti vortex motionvith the help of
the evolution of the density
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Annihilation and sound wave production
Formation of a mini turbulent system




Number of vortices for random vortex — antivortex pairs
placed in the condensate with initial separation adiste ¢ = 1.8
as a function of time for different dissipations

For dissipationy = 0.003
( The green curve: f(x) = exp(b*t), b = -0.0089)

For dissipationy = 0.048
(The green curve: f(x) = exp(b*t), b = -0.0837)

For dissipationy = 0.07
(The green curve: f(x) = exp(b*t), b = -0.1437)

For dissipationy = 0.1
(The green curve: f(x) = exp(b*t), b = -0.184)

Decay ratep of the number of vorticesas afunction of dissipationy




Conclusions

Without dissipation the vortex trajectory is a closedveu
With dissipation the vortex spirals out to the edgéefcondensate
Smaller and larger initial separation distancg$aye similar periods

The cyclical motion and the inhomogeneity of the carghte changes
the compressibility and as a result the moving vor@x produces acoustic emissions

The sound is reabsorbed

We study the sound production with help of the sourergynand find
an anticorrelation between the sound energy and verexgy

We calculate the translation speegl,Av, and the frequency of motian, /o,
with two methods and show that they coincide very well

Differenet energies were studied for dissipatyon0.003 in the case of vortex-antivort

We describe the friction coefficients,anda as a function of dissipation
initial position x and frequency of motio®

a ando’ increase as the dissipatignncreases
We discuss the exponential constant of the radius @di@y and different energies

We demonstrate with some plots the decrease of the muwhkertices with time,
which are exponential functions




