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5. Bayesian inference for extremes

Throughout this short course, the method of maximum likelihood
has provided a general and flexible technique for parameter
estimation.

In fact, there are numerous other inferential procedures available,
such as:

Method of moments;

Probability weighted moments;

L–moments;

Ranked set estimation; and, of course,

Bayesian inference

Lee Fawcett and Dave Walshaw

Modelling Environmental Extremes



More complex problems Current topics

5.1 General theory

Bayesian techniques offer an alternative way to draw inferences
from the likelihood function, which many practitioners often prefer.

As in the non–Bayesian setting, we assume data x = (x1, . . . , xn)
to be realisations of a random variable whose density falls within a
parametric family F = {f (x;ψ) : ψ ∈ Ψ}.

However, parameters of a distribution are now treated as random
variables, for which we specify prior distributions.

Lee Fawcett and Dave Walshaw
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5.1 General theory

This often provides the main argument for – and against (!) – the
use of Bayesian methods:

The specification of these prior distributions enables us to
supplement the information provided by the data – which, in
extreme value analyses, is often very limited – with other
sources of information.

But since different analysts might specify different priors,
conclusions become subjective.
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5.1 General theory

Suppose we model our observed data x using the probability
density function f (x;ψ).

The likelihood function for ψ is therefore L(ψ|x) = f (x;ψ).

Also, suppose our prior beliefs about likely values of ψ are
expressed by the probability density function π(ψ).

Lee Fawcett and Dave Walshaw
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5.1 General theory

We can combine both pieces of information using Bayes Theorem,
which states that

π(ψ|x) =
π(ψ)L(ψ|x)

f (x)
,

where

f (x) =























∫

Ψ
π(ψ)L(ψ|x)dψ if ψ,

∑

Ψ

π(ψ)L(ψ|x) if ψ is discrete.

Since f (x) is not a function of ψ, Bayes Theorem can be written as

π(ψ|x) ∝ π(ψ) × L(ψ|x)

i.e. posterior ∝ prior × likelihood.
Lee Fawcett and Dave Walshaw
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5.1 General theory

In equation (16), π(ψ|x) is the posterior distribution of the
parameter vector ψ, ψ ∈ Ψ, i.e. the distribution of ψ after the
inclusion of the data.

This prior distribution is often of great interest, since the
prior–posterior changes represent the changes in our beliefs after
the data has been included in the analysis.

However, computation of the denominator in (16) can be
problematic, and usually analytically intractable.

Stochastic simulation is one possible solution.

Lee Fawcett and Dave Walshaw
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5.2 Markov chain Monte Carlo

The recent explosion in Markov chain Monte Carlo (MCMC)
techniques owes largely to their application in Bayesian inference.

The idea is to produce simulated values from the posterior
distribution – not exactly, as this is usually unachievable, but
through an appropriate MCMC technique.

Lee Fawcett and Dave Walshaw
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5.2.1 The Gibbs sampler

The Gibbs sampler is a way of simulating from multivariate
distributions based only on the ability to simulate from conditional
distributions.

Suppose the density of interest (usually the posterior density) is
π(ψ), where ψ = (ψ1, . . . , ψd )′, and that the full conditionals

π(ψi |ψ1, . . . , ψi−1, ψi+1, . . . , ψd ) = π(ψi |ψ−i ) = πi(ψi ), i = 1, . . . , d

are available for simulating from.

Lee Fawcett and Dave Walshaw
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5.2.1 The Gibbs sampler

The Gibbs sampler uses the following algorithm:

1. Initialise the iteration counter to k = 1. Initialise the state of
the chain to ψ(0) = (ψ

(0)
1 , . . . , ψ

(0)
d

)′;

2. Obtain a new value ψ(k) from ψ(k−1) by successive
generation of values

ψ
(k)
1 ∼ π(ψ1|ψ

(k−1)
2 , . . . , ψ

(k−1)
d

)

ψ
(k)
2 ∼ π(ψ2|ψ

(k)
1 , ψ

(k−1)
3 , . . . , ψ

(k−1)
d )

...
...

ψ
(k)
d ∼ π(ψd |ψ

(k)
1 , . . . , ψ

(k)
d−1);

3. Change counter k to k + 1, and return to step 2.
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5.2.1 The Gibbs sampler

Each simulated value depends only on the previous simulated
value, and not any other previous values.

The Gibbs sampler can be used in isolation if we can readily
simulate from the full conditional distributions.

However, this is not always the case. Fortunately, the Gibbs
sampler can be combined with Metropolis–Hastings schemes when
the full conditionals are difficult to simulate from.

Lee Fawcett and Dave Walshaw
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5.2.2 Metropolis–Hastings sampling

Suppose again that π(ψ) is the density of interest.

Further, suppose that we have some arbitrary transition kernel
p(ψi+1,ψi) for iterative simulation of successive values. Then
consider the following algorithm:

1. Initialise the iteration counter to k = 1, and initialise the
chain to ψ(0);

2. Generate a proposed value ψ′ using the kernel p(ψ(k−1),ψ′);

Lee Fawcett and Dave Walshaw
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5.2.2 Metropolis–Hastings sampling

3. Evaluate the acceptance probability A(ψ(k),ψ′) of the
proposed move, where

A(ψ,ψ′) = min

{

1,
π(ψ′)L(ψ′|x)p(ψ′,ψ)

π(ψ)L(ψ|x)p(ψ,ψ′)

}

;

4. Put ψ(k) = ψ′ with probability A(ψ(k−1),ψ′), and put
ψ(k) = ψ(k−1) otherwise;

5. Change the counter from k to k + 1 and return to step 2.

Lee Fawcett and Dave Walshaw
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5.2.2 Metropolis–Hastings sampling

So at each stage, a new value is generated from the proposal
distribution.

This is either accepted, in which case the chain moves, or rejected,
in which case the chain stays where it is.

Whether or not the move is accepted or rejected depends on the
acceptance probability which itself depends on the relationship
between the density of interest and the proposal distribution.

Lee Fawcett and Dave Walshaw
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5.2.2 Metropolis–Hastings sampling

Common choices for the proposal distribution include:

symmetric chains, where

p(ψ,ψ′) = p(ψ′,ψ)

random walk chains, where the proposal ψ′ at iteration k is

ψ′ = ψ + εk ,

where the εk are IID random variables.

Lee Fawcett and Dave Walshaw
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5.2.2 Metropolis–Hastings sampling

According to Coles (2001),

“...it’s almost like magic... regardless of the choice of p, the

rejection steps involved ensure that the simulated values have, in a

limiting sense, the desired marginal distribution”

In reality, there is alot more to the story, since choosing p so as to
ensure a short “settling–in” period and low dependence between
successive values can be difficult to arrange.
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5.2.3 Hybrid methods

Here, we combine Gibbs sampling and Metropolis–Hastings
schemes to form hybrid Markov chains whose stationary
distribution is the distribution of interest.

For example, given a multivariate distribution whose full
conditionals are awkward to simulate from directly, we can:

Define a Metropolis–Hastings scheme for each full conditional

Apply them to each component in turn for each iteration

Another scheme, known as “Metropolis within Gibbs”, goes
through each full conditional in turn, simulating directly from the
full conditionals wherever possible, and carrying out a
Metropolis–Hastings update elsewhere.

Lee Fawcett and Dave Walshaw
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5.3 Bayesian inference for extremes

There are various (compelling?) reasons for preferring a Bayesian
analysis of extremes over the more traditional likelihood approach.

Extreme data are (by their very nature) scarce, so the ability
to incorporate other sources of information through a prior
distribution has obvious appeal

Bayes’ Theorem leads to an inference that comprises a
complete distribution

It is not dependent on the regularity assumptions required by
the theory of maximum likelihood

Implicit in the Bayesian framework is the concept of the
predictive distribution

Lee Fawcett and Dave Walshaw
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5.3 Bayesian inference for extremes

This predictive distribution describes how likely are different
outcomes of a future experiment.

The predictive probability density function is given by

f (y |x) =

∫

Ψ
f (y |ψ)π(ψ|x)dψ

We can see that the predictive distribution is formed by weighting
the possible values for ψ in the future experiment f (y |ψ) by how
likely we believe they are to occur after seeing the data.

Lee Fawcett and Dave Walshaw
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5.3 Bayesian inference for extremes

For example, a suitable model for the threshold excess Y of a
process is Y ∼ GPD(σ, ξ).

Estimation of ψ = (σ, ξ) could be made on the basis of previous
observations x = (x1, . . . , xn).

Thus, in the Bayesian framework, we would have

Pr {Y ≤ y |x1, . . . , xn} =

∫

Ψ
Pr {Y ≤ y |ψ}π(ψ|x)dψ.

This equation gives the distribution of a future threshold excess,
allowing for both parameter uncertainty and randomness in future
observations.

Lee Fawcett and Dave Walshaw
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5.3 Bayesian inference for extremes

Solving

Pr {Y ≤ qr ,pred|x1, . . . , xn} = 1 −
1

r

for qr ,pred therefore gives an estimate of the r–year return level
that incorporates uncertainty due to model estimation.

After removal of the “burn–in” period, the MCMC procedure gives
a sample ψ1, . . . ,ψB . Thus

Pr {Y ≤ qr ,pred|x1, . . . , xn} ≈
1

B

B
∑

i=1

Pr {Y ≤ qr ,pred|ψi} ,

which we can solve for qr ,pred using a numerical solver.

Lee Fawcett and Dave Walshaw
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5.3.1 Example: Port Pirie, South Australia

Figure 18 shows a time series plot of annual maximum sea levels at
another Australian location – Port Pirie, in South Australia.

Notice that, unlike the corresponding data from Fremantle in
Western Australia, there doesn’t appear to be any trend in this
series.

We use the GEV as a model for the annual maximum sea levels at
Port Pirie Zi in year i , i.e.

Zi ∼ GEV (µ, σ, ξ) , i = 1, . . . , 65.

Lee Fawcett and Dave Walshaw
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5.3.1 Example: Port Pirie, South Australia
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5.3.1 Example: Port Pirie, South Australia

When employing MCMC methods it is common to re–parameterise
the GEV scale parameter and work with η = log(σ) to retain the
positivity of this parameter.

In the absence of any expert prior information regarding the three
parameters of the GEV distribution, we adopt a ‘naive’ approach
and use largely non–informative, independent priors for these,
namely

π(µ) ∼ N(0, 10000),

π(η) ∼ N(0, 10000) and

π(ξ) ∼ N(0, 100),

the large variances of these distributions imposing near–flat priors.

Lee Fawcett and Dave Walshaw
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5.3.1 Example: Port Pirie, South Australia

We use a Metropolis–Hastings MCMC sampling scheme since the
full conditionals (for Gibbs sampling) are unobtainable.

After setting initial starting values for ψ = (µ, η, ξ), we use a
random walk update procedure to generate future values in the
chain, i.e.

µ′ = µi + ǫµ

η′ = ηi + ǫη and

ξ′ = ξi + ǫξ,

with the ǫ being normally distributed with zero mean and variances
vµ, vη and vξ respectively.
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5.3.1 Example: Port Pirie, South Australia
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5.3.1 Example: Port Pirie, South Australia

0.2 0.4
1
.0

0
.5

0
.0

0.0

µ σ

ξ

0

00
1

2
2

P
o
st

er
io

r
d
en

si
ty

P
o
st

er
io

r
d
en

si
ty

P
o
st

er
io

r
d
en

si
ty

P
o
st

er
io

r
d
en

si
ty

100–year return level

0.15 0.20 0.25 0.30 0.35

5
5

1
5

1
.5

2
.0

7

3.75 3.80 3.85 3.90 3.95 4.00

-0.4 -0.2

3
4

4

6

6

1
0

1
0
1
2
1
4

2
.5

8

8

µ σ ξ q100

Posterior mean (st. dev.) 3.874 (0.028) 0.203 (0.021) –0.024 (0.098) 4.788 (0.255)
distribution 95% CI (3.819, 3.932) (0.166, 0.249) (–0.196, 0.182) (4.516, 5.375)
Maximum m.l.e. (s.e.) 3.872 (0.028) 0.198 (0.020) -0.040 (0.098) 4.692 (0.158)
likelihood 95% CI (3.821, 3.930) (0.158, 0.238) (–0.242, 0.142) (4.501, 5.270)

Lee Fawcett and Dave Walshaw

Modelling Environmental Extremes



More complex problems Current topics

5.3.2 More complex structures

In this section we briefly discuss the work which will be presented
at next week’s TIES conference.

In this work, we:

Develop a hierarchical model for hourly maximum wind speeds
over a region of central and northern England.

construct a model which is based on a standard limiting
extreme value distribution, but

– incorporates random effects for site variation
– incorporates random effects for seasonal variation
– explicitly models the temporal dependence inherent in the data

Lee Fawcett and Dave Walshaw
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5.3.2 More complex structures

Figure 22 illustrates an exploratory analysis of data from two
contrasting sites, Nottingham and Bradfield.

Shown are time series plots of the hourly maxima, histograms, and
a plot of the time series against the version at lag 1.

The first three years of data only are used in each case, to best
illustrate the relevant data characteristics. We now (very briefly)
outline the model structure used.

Lee Fawcett and Dave Walshaw
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5.3.2 More complex structures
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5.3.2 More complex structures
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5.3.2 More complex structures

We will start with the Generalised Pareto Distribution as a model
for threshold excesses.

By doing so, we can incorporate more extreme data in our analysis
than if we were to select “block maxima”, and so increase the
precision of our analysis.

Thus, wind speed excesses over a high threshold will be modelled
with a GPD(σ, ξ).

Lee Fawcett and Dave Walshaw

Modelling Environmental Extremes



More complex problems Current topics

5.3.2 More complex structures: Seasonal variation

Possible solution: Restrict an extreme value analysis to the
‘season’ which contains the ‘most extreme’ extremes (e.g. Coles
and Tawn, 1991)

We want our model to take account of seasonal variability and
identify all gusts which are large given the time of year as extreme!

Our solution: Fit a seasonally–varying GPD!

For wind speed data, there is no natural partition into
separate seasons (in the UK)

We partition the annual cycle into 12 ‘seasons’ (we use
calendar months)

– reflects well the continuous nature of seasonal climate changes
– still enough data within each season for analysis!

Lee Fawcett and Dave Walshaw
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5.3.2 More complex structures: Site variability

We take the same approach to allow for site variation.

Thus, our model will yield parameter pairs

(σm,j , ξm,j), for m, j = 1, . . . , 12,

where m and j are indices of season and site (respectively).

We also need our threshold u to vary, since different criteria for
what constitutes an extreme will be in play for each combination of
season and site.

We denote by um,j the threshold for identifying extremes in month
m at site j .

Lee Fawcett and Dave Walshaw

Modelling Environmental Extremes



More complex problems Current topics

5.3.2 More complex structures: Temporal dependence

The plot of the time series against the version at lag 1, for each
site, shows the presence of substantial serial correlation between
successive extremes.

What can be done?

1 ‘Remove’ it – use “Peaks over threshold” (Davison and
Smith, 1990)

2 ‘Ignore’ it – initially, but then adjust standard errors
post–analysis (Smith, 1991)

3 Model it

Lee Fawcett and Dave Walshaw
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5.3.2 More complex structures: Temporal dependence

We have already seen – in Part 2 of this short course – the
shortcomings of declustering (and using POT).

That leaves us with:

(a) Adjust inference post–analysis to account for temporal
dependence

(b) Explicitly model the dependence present

We opt for (b), because:

Our intention in this work is to investigate complex structures
in the data, not ignore or remove them!

Exploratory analyses support a simple first–order Markov
model for the serial dependence (Fawcett and Walshaw, 2006)

Lee Fawcett and Dave Walshaw
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5.3.2 More complex structures: Temporal dependence

The logistic model is one of the most flexible and accessible of
these models (for example, see Tawn, 1988).

For consecutive threshold exceedances, the appropriate form of this
model is given by:

F (xi , xi+1) = 1 −
(

Z (xi)
−1/α + Z (xi+1)

−1/α
)α

, xi , xi+1 > u,

where the transformation Z is given by

Z (x) = λ−1{1 + ξ(x − u)/σ}
1/ξ
+ ,

and ensures that the margins are of GPD form.

Independence and complete dependence are obtained when α = 1
and αց 0 respectively.

Lee Fawcett and Dave Walshaw
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5.3.2 More complex structures: Threshold stability

Recall that we denote by (σm,j , ξm,j) the parameters of the GPD
assumed to be valid for threshold excesses in season m and site j .

To ensure threshold stability in our models, we now use

σ̃m,j = σm,j − ξm,jum,j

Lee Fawcett and Dave Walshaw
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5.3.2 More complex structures: Threshold stability

With this parameterisation, if X − u∗

m,j follows a GPD(σ̃m,j , ξm,j),
where um,j > u∗

m,j , then

X − um,j also follows the same GPD,

which is useful for comparisons across different sites and
seasons.

It also allows us to specify prior information about both
parameters without having to worry about threshold
dependency.

Lee Fawcett and Dave Walshaw
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5.3.2 More complex structures: The model

With these assumptions in mind, we build the following random
effects model:

log(σ̃m,j) = γ
(m)
σ̃ + ǫ

(j)
σ̃ ,

ξm,j = γ
(m)
ξ + ǫ

(j)
ξ and

αj = ǫ(j)α ,

where γ and ǫ represent seasonal and site effects respectively.

We work with log(σ̃m,j) for computational convenience, and to
retain the positivity of the scale parameter σ̃m,j .

Lee Fawcett and Dave Walshaw
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5.3.2 More complex structures: The model

All random effects for log(σ̃m,j) and ξm,j are taken to be normally
and independently distributed:

γ
(m)
σ̃ ∼ N0(0, τσ̃) and

γ
(m)
ξ ∼ N0(0, τξ), m = 1, . . . , 12,

for the seasonal effects, and

ǫ
(j)
σ̃ ∼ N0(aσ̃, ζσ̃) and

ǫ
(j)
ξ ∼ N0(aξ, ζξ), j = 1, . . . , 12,

for the site effects.

In the absence of any prior knowledge about αj , we set

ǫ(j)α ∼ U(0, 1).

Lee Fawcett and Dave Walshaw
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5.3.2 More complex structures: The model

The final layer of the model is the specification of prior
distributions for the random effect distribution parameters.

Here we adopt conjugacy wherever possible to simplify
computations, specifying:

aσ̃ ∼ N0(bσ̃ , cσ̃), aξ ∼ N0(bξ, cξ);

τσ̃ ∼ Ga(dσ̃, eσ̃), τξ ∼ Ga(dξ, eξ);

ζσ̃ ∼ Ga(fσ̃, gσ̃), ζξ ∼ Ga(fξ, gξ).

Lee Fawcett and Dave Walshaw
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5.3.2 More complex structures: MCMC

Estimation of the model is made via a Metropolis within Gibbs
algorithm

Here, we update each component singly using a Gibbs sampler
where conjugacy allows;

Elsewhere, we adopt a Metropolis step

Lee Fawcett and Dave Walshaw
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5.3.2 More complex structures: MCMC

The full conditionals for the Gibbs sampling are:

a
�
| . . . ∼ N

(

b
�
c
�
+ ζ

�

∑

ǫ
(j)
�

c
�
+ nsζ�

, c
�
+ nsζ�

)

;

ζ
�
| . . . ∼ Ga

(

f
�
+

ns

2
, g

�
+

1

2

∑

(ǫ
(j)
�

− a
�
)2
)

;

τ
�
| . . . ∼ Ga

(

d
�
+

nm

2
, e

�
+

1

2

∑

(γ
(m)
�

)2
)

;

where nm = 12 and ns = 12.

The complexity of the GPD likelihood means that conjugacy is
unattainable for the random effects parameters, and a Metropolis
step is used here.
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5.3.2 More complex structures: MCMC

Obviously, we first need to specify appropriate hyper–parameters.
In the absence of any expert prior knowledge, we use:

b
�
= 0, c

�
= 10−6, d

�
= e

�
= f

�
= g

�
= 10−2.

The implementation of the MCMC scheme then yields samples
from the approximate posterior distributions for

the 12 site effect parameters for each of log(σ̃m,j) and ξm,j ;

the 12 seasonal effect parameters for each of log(σ̃m,j) and
ξm,j , and

the 12 site effect parameters for the dependence parameter αj .
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5.3.2 More complex structures: Some results

iteration

0 200 400 600 800 1000

−0
.5

0.
5

iteration

0 200 400 600 800 1000

−0
.5

0.
5

iteration

0 200 400 600 800 1000

−0
.5

0.
5

iteration

0 200 400 600 800 1000

−0
.5

0.
5

iteration

0 200 400 600 800 1000
−1

.0
0.

0

iteration

0 200 400 600 800 1000

−1
.0

0.
0

iteration

0 200 400 600 800 1000

−0
.5

0.
5

iteration

0 200 400 600 800 1000

−1
.0

0.
0

iteration

0 200 400 600 800 1000

−0
.5

0.
5

iteration

0 200 400 600 800 1000

−1
.0

0.
0

iteration

0 200 400 600 800 1000

−0
.5

0.
5

iteration

0 200 400 600 800 1000

−1
.0

0.
0

Sheffield Bradfield RAF Leeming

Linton on Ouse Scampton Cranwell

Bingley Nottingham Finningley

Keele Aigburth Ringway

ǫ
(1

)
σ̃

ǫ
(2

)
σ̃

ǫ
(3

)
σ̃

ǫ
(4

)
σ̃

ǫ
(5

)
σ̃

ǫ
(6

)
σ̃

ǫ
(7

)
σ̃

ǫ
(8

)
σ̃

ǫ
(9

)
σ̃

ǫ
(1

0
)

σ̃

ǫ
(1

1
)

σ̃ ǫ
(1

2
)

σ̃

Lee Fawcett and Dave Walshaw

Modelling Environmental Extremes



More complex problems Current topics

5.3.2 More complex structures: Some results
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5.3.2 More complex structures: Some results

Bradfield, January Nottingham, July
Mean (st. dev.) MLE (s.e.) Mean (st. dev.) MLE (s.e.)

γ
(m)
σ̃ 1.891 (0.042) 1.294 (0.042)

γ
(m)
ξ 0.021 (0.018) 0.002 (0.018)

ǫ
(j)
σ̃ 0.367 (0.044) –0.121 (0.041)

ǫ
(j)
ξ –0.105 (0.020) –0.059 (0.017)

ǫ
(j)
α 0.385 (0.009) 0.300 (0.011)
σ̃m,j 7.267 (0.211) 8.149 (0.633) 3.234 (0.061) 2.914 (0.163)
ξm,j –0.084 (0.015) –0.102 (0.055) –0.057 (0.013) 0.018 (0.044)
αj 0.385 (0.009) 0.368 (0.012) 0.400 (0.011) 0.412 (0.020)
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5.3.2 More complex structures: Some results
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5.3.2 More complex structures: Some results
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5.3.2 More complex structures: Some results

The main take–home points are:

A reduction in sampling variation under the Bayesian
hierarchical model

– posterior standard deviations substantially smaller than the
corresponding standard errors...

– ... probably due to the pooling of information across sites and
seasons

– This is also evident in the “shrinkage plots”

Estimates of return levels using maximum likelihood
estimation can be very unstable – the hierarchical model
achieves a greater degree of stability

The Bayesian paradigm offers an extension to predictive
return levels, which cannot be achieved under the classical
approach to inference
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