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2. Dependence and non–stationarity

The asymptotic results introduced in Part 1 have assumed the
underlying process to be independent and identically distributed

They also assume this process is stationary.
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2. Dependence and non–stationarity

In practice, extreme value data – particularly environmental time
series – exhibit some form of departure from this ideal. The most
common forms are:

— Local temporal dependence, where successive values of the
time series are dependent, but values farther apart are
independent;

— Long term trends, where the underlying distribution changes
gradually over time;

— Seasonal variation, where the underlying distribution
changes periodically through time.
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2. Dependence and non–stationarity

These departures can be handled through a combination of
extending both the theory and the modelling.

However, theoretical results have generally been too specific to be
of use in modelling data for which the form of non–stationarity is
unknown.

Over the last decade or so, it has been more usual for practitioners
to employ statistical procedures which allow the existing results to
be applied.

In Part 2, we will consider some of these in detail.
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2.1 Extremes of dependent sequences

For the types of data to which extreme value models are commonly
applied, temporal independence is usually unrealistic:

Extreme conditions often persist over several consecutive
observations...

... which brings into question the appropriateness of models
such as the GEV

We haven’t got time to consider the mathematics behind
this...

... but we will consider a pivotal result which extends the
theory presented in Part 1 to cover processes which display
short–term temporal dependence

For the remainder of this section on dependent sequences, we shall
assume that our process is stationary.
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2.1 Extremes of dependent sequences

Dependence in stationary sequences can take many different forms.

With practical applications in mind, it is common to assume a
condition that limits the extent of dependence to short–range
temporal dependence.

This means that events Xi and Xj , both of which are extreme, are
independent provided time points i and j are far enough apart.

Lee Fawcett and Dave Walshaw

Modelling Environmental Extremes



More complex problems Current topics

2.1 Extremes of dependent sequences

You might see why this property is often satisfactory. For example:

Suppose we know that it rained heavily today

That might influence the probability of extreme rainfall
tomorrow...

... or even the Tuesday...

... or maybe even Wednesday!

But maybe not for a specified day in two months’ time!
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2.1 Extremes of dependent sequences

Indeed, many real–life sequences satisfy this property.

By excluding the possibility of long–range dependence in this way,
we focus our attention on dependence at a much shorter range.

Effects of such short–range dependence, it turns out, can be
quantified within the standard extreme value limits discussed in
Part 1.

Lee Fawcett and Dave Walshaw

Modelling Environmental Extremes



More complex problems Current topics

2.1.1 Maxima of stationary sequences

Leadbetter et al. (1983) consider, in great detail, properties of
extremes of dependent processes.

A key result often used is ‘Leadbetter’s D(un) condition’, which
ensures that long–range dependence is sufficiently weak so as not
to affect the asymptotics of an extreme value analysis.
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2.1.1 Maxima of stationary sequences

Theorem

Let X̃1, X̃2, . . . be a stationary series satisfying Leadbetter’s D(un)
condition, and let M̃n = max{X̃1, . . . , X̃n}.

Now let X1,X2, . . . be an independent series with X having the
same distribution as X̃ , and let Mn = max{X1, . . . ,Xn}.

Then if Mn has a non–degenerate limit law given by
Pr {(Mn − bn)/an ≤ x} → G (x), it follows that

Pr
{

(M̃n − bn)/an ≤ x
}

→ G θ(x)

for some 0 ≤ θ ≤ 1.
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2.1.1 Maxima of stationary sequences

The parameter θ is known as the extremal index, and quantifies
the extent of extremal dependence:

θ = 1 corresponds to a completely independent process

θ → 0 with increasing levels of (extremal) dependence.

Since G in the above theorem is necessarily an extreme value
distribution, and due to the max–stability property (see Leadbetter
et al., 1983), then G θ(x) is also a GEV distribution.

The powering of the limit distribution by θ only affects the location
and scale parameters of this distribution.
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2.1.1 Maxima of stationary sequences

So what does this mean in practice?

If maxima of a stationary sequence converge – and we know
they do...

... then, provided the D(un) condition holds, the limit
distribution is related to that of an independent series.

The effect of dependence is just a replacement of G with G θ.
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2.1.1 Maxima of stationary sequences

In fact, if G corresponds to the GEV distribution with parameters
(µ, σ, ξ), then

G θ(z) = exp

{

−

[

1 + ξ

(

z − µ

σ

)]

−1/ξ
}θ

= exp

{

−

[

1 + ξ

(

z − µ∗

σ∗

)]

−1/ξ
}

,

where µ∗ = µ − σ
ξ

(

1 − θ−ξ
)

and σ∗ = σθξ.

Thus, if the (approximate) distribution of Mn is GEV with
parameters (µ, σ, ξ), then the (approximate) distribution of M̃n is
GEV with parameters (µ∗, σ∗, ξ)!
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2.1.2 Modelling block maxima

Good news!

Provided long–range dependence is weak, we can model block
maxima in the usual way!

The distribution of block maxima falls within the same family
of distributions as would be appropriate if the series were truly
independent!

The only difference is a change in location and scale
parameters

However...

Our implied n (the number we are taking the maxima over) is
now effectively reduced due to the dependence

Thus convergence to the limit distribution will be slower
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2.1.3 Modelling threshold exceedances

We have seen that things remain largely unchanged for fitting to a
set of block maxima in the presence of short–term temporal
dependence

However, some revision is needed of the threshold exceedance
approach.

If all threshold exceedances are used in our analysis, and the GPD
fitted to the set of threshold excesses, the likelihoods we use will be
incorrect since they assume independence of sample observations.
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2.1.3 Modelling threshold exceedances

In practice, several techniques have been developed to circumvent
this problem, including:

1. filtering out an (approximately) independent set of threshold
exceedances

2. fitting the GPD to all exceedances, ignoring dependence, but
then appropriately adjusting the inference post–analysis

3. Explicitly modelling the temporal dependence in the process

Approach 1 is the most widely–used. However, we have focussed
on the relative merits of the other two, and have found some
surprising results!
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2.1.4 Example: Cluster peaks or all excesses?

Figure 9 shows a series of 3–hourly measurements of sea–surge
heights at Newlyn, a coastal town in the southwest of England,
collected over a three year period.

The sea–surge is the meteorologically induced non–tidal
component of the still–water level of the sea.

The practical motivation for the study of such data is that
structural failure — probably a sea–wall in this case — is likely
under the condition of extreme surges.
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2.1.4 Example: Cluster peaks or all excesses?
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2.1.4 Example: Cluster peaks or all excesses?

A natural way of modelling extremes such time series is to use the
Generalised Pareto Distribution (GPD) as a model for excesses
over a high threshold.

As already discussed in Part 1, this approach might be preferable
to the block maxima approach which is highly wasteful of data
(and precious extremes!).

Figure 9 also shows the presence of substantial temporal
dependence in the sequence of three–hourly surges.

We will now consider approaches 1 and 2, outlined above, to
circumvent this problem.

Lee Fawcett and Dave Walshaw

Modelling Environmental Extremes



More complex problems Current topics

2.1.4 Example: ‘Removing’ dependence

The most commonly adopted approach to circumvent the problems
caused by temporal dependence is to use ‘runs declustering’ to
filter out a set of independent extremes

1. Choose an auxiliary ‘declustering parameter’ (which we call κ)

2. A cluster of threshold excesses is then deemed to have
terminated as soon as at least κ consecutive observations fall
below the threshold

3. Go through the entire series identifying clusters in this way

4. The maximum (or ‘peak’) observation from each cluster is
then extracted, and the GPD fitted to the set of cluster peak
excesses.
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2.1.4 Example: ‘Removing’ dependence

This approach is often referred to as the peaks over threshold

approach (POT, Davison and Smith, 1990) and is widely accepted
as the main pragmatic approach for dealing with clustered
extremes.

Although this approach is quite easy to implement, there are issues
surrounding the choice of κ; if

κ is too small, the cluster peaks will not be far enough apart
to safely assume independence

κ is too large, there will be too few cluster exceedances on
which to form our inference
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2.1.4 Example: ‘Removing’ dependence

It has also been shown that parameter estimates can be sensitive
to the choice of κ.

In this example, we use a separation interval of 60 hours (and so
κ = 20) because

that’s what Coles and Tawn (1991) do

they suggest that this is large enough to safely assume
independence between identified clusters

this also allows for ’wave propagation time’

We also use a mean residual life plot to identify a suitably high
threshold (0.3m).
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2.1.4 Example: Cluster peaks or all excesses?

The table below shows maximum likelihood estimates of the GPD
scale and shape parameters σ and ξ, along with the associated
95% confidence intervals, fitted to the set of cluster peak excesses
using κ = 20.

Shown for comparison are the corresponding estimates using all

threshold exceedances, ignoring temporal dependence.

σ̂ ξ̂

Cluster peaks 0.187 –0.259
95% confidence interval (0.109, 0.265) (–0.545, 0.027)

All excesses 0.104 –0.090
95% confidence interval (0.084, 0.125) (–0.215, 0.035)
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2.1.4 Example: ‘Ignoring’ dependence

Table 1 shows that, although there is a slight discrepancy in
parameter estimation when using (i) cluster peak exceedances and
(ii) all exceedances, these discrepancies are non–significant.

Therefore, why bother declustering? Surely we’re better off using
all excesses?

Confidence intervals too narrow – fitting to all exceedances
when there is clearly evidence of short–term temporal
dependence will result in underestimated standard errors
But! Smith (1991) suggests a procedure in which we can
inflate the standard errors post–analysis to take into account
the temporal dependence (sometimes known as the variance
“sandwich estimator”)
We haven’t got time to go into this in detail today, but a full
run–down of this procedure is given in the notes!
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2.1.4 Example: ‘Ignoring’ dependence

Smith’s adjustment: technique:

Replace the critical value used to carry out a likelihood ratio
test by a larger value

The significance levels are then adjusted to take the
dependence into account

Overall effect:

Inflate the standard errors associated with MLEs

Increase the width of confidence intervals (obtained directly or
via profile likelihood)
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2.1.4 Example: Cluster peaks or all excesses?

The first table on the next slide is a repeat of the last table, but
now the standard errors for the GPD parameters have been inflated
according to Smith’s variance sandwich estimator procedure.

The second table shows maximum likelihood estimates for return
levels for four return periods — s = 10, 50, 200 and 1000 years.

For the return levels, the corresponding 95% confidence intervals
have been obtained using the method of profile likelihood, inflated
appropriately according to Smith’s adjustment
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2.1.4 Example: Cluster peaks or all excesses?

σ̂ ξ̂
Cluster peaks 0.187 –0.259

95% Confidence Interval (0.109, 0.265) (–0.545, 0.027)
All excesses 0.104 –0.090

95% Confidence Interval (0.082, 0.126) (–0.217, 0.037)

ẑ10 ẑ50 ẑ1000

Cluster peaks 0.868 0.920 0.975
95% Confidence Interval (0.770, 1.031) (0.813, 1.099) (0.858, 1.063)

All excesses 0.867 0.947 1.068
95% Confidence Interval (0.736, 1.067) (0.790, 1.193) (0.891, 1.335)
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2.1.4 Example: Cluster peaks or all excesses?

Profile log–likelihood for 50–year return level (all excesses)
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2.1.4 Example: Cluster peaks or all excesses?

Profile log–likelihood for 50–year return level (all excesses)
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2.1.4 Example: Cluster peaks or all excesses?

Profile log–likelihood for 50–year return level (all excesses)
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2.1.4 Example: Cluster peaks or all excesses?

So we know there are differences – some significant – in return
level estimation when we use (i) cluster peak excesses and (ii) all
threshold excesses. Which approach are we to trust?

The usual approach is to use cluster peaks, then we have
effectively removed temporal dependence

However, return levels using this approach are underestimated
relative to the procedure which uses all threshold excesses

Using cluster peak excesses could result in substantial
under–protection!

Lee Fawcett and Dave Walshaw

Modelling Environmental Extremes



More complex problems Current topics

2.1.4 Example: Simulation study
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ẑ50 ẑ200

ξ̂

1
0

1
0

1
0

1
2

1
4

5

Lee Fawcett and Dave Walshaw

Modelling Environmental Extremes



More complex problems Current topics

2.1.4 Example: Simulation study

αα

αα

E
st

im
a
te

d
b
ia

s
(σ

∗
)

E
st

im
a
te

d
b
ia

s
(ξ

)

E
st

im
a
te

d
b
ia

s
(z

5
0
)

E
st

im
a
te

d
b
ia

s
(z

2
0
0
)

0
.0

0
0
.0

5
0
.1

0
0
.1

5

0.20.2

0.20.2

0.40.4

0.40.4

0.60.6

0.60.6

0.80.8

0.80.8

1.01.0

1.01.0

–
0
.4

–
0
.4

–
0
.3

–
0
.3

–
0
.2–
0
.2

–
0
.2

–
0
.1

–
0
.1

0
.0

0.0

0
.0

0.0

0
.0

0.00.0

Lee Fawcett and Dave Walshaw

Modelling Environmental Extremes



More complex problems Current topics

2.2 Non–stationarity: trend

In Section 2.1 we demonstrated that the usual extreme value limit
models are still applicable in the presence of short–term temporal
dependence.

We can use the results for block maxima directly as they stand

Some thought is required for threshold modelling

The general theory can not be extended for non–stationary series.

Instead, it is usual to adopt a pragmatic approach of using the
standard extreme value models as basic templates that can be
augmented by statistical modelling.
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2.2 Non–stationarity: trend

Figure 12 shows a time series plot of annual maximum sea levels
observed at Fremantle, Western Australia, between 1900 and 1986.

Also shown are these sea–levels plotted against the annual mean
value of the Southern Oscillation Index (SOI).

There appears to be an increase in annual maximum sea levels
through time, as well as an association between annual maximum
sea levels and the mean SOI.
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2.2 Non–stationarity: trend
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2.2 Non–stationarity: trend

We can accommodate the time–trend shown in the plot on the
left–hand–side of Figure 12 by fitting the GEV distribution, but
allowing for a linear trend in the underlying level of extreme
behaviour.

For example, if Zt is the annual maximum sea level at Fremantle in
year t, then we might use

Zt ∼ GEV (µ(t), σ, ξ)

where

µ(t) = β0 + β1t.
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2.2 Non–stationarity: trend

In this way, variations through time in the observed process are
modelled as a linear trend in the location parameter of the
appropriate extreme value model (the GEV in this case).

We might choose to adopt the following model for µ(t):

µ(t) = β0 + β1SOI(t)

to allow for a linear association between the maximum sea level in
year t and the SOI in year t.

Or perhaps a multiple linear regression model for µ(t), whereby

µ(t) = β0 + β1t + β2SOI(t);

Lee Fawcett and Dave Walshaw
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2.2 Non–stationarity: trend

We can then assess our preferences between:

1 the stationary model: µ(t) = β0

2 the models which allow for a trend in time: µ(t) = β0 + β1t

3 the model which allows for a dependence on SOI through
time: µ(t) = β0 + β1SOI(t)

4 the model which allows for a dependence on both time aand

SOI: µ(t) = β0 + β1t + β2SOI(t)

Lee Fawcett and Dave Walshaw
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2.2 Non–stationarity: trend

For example, fitting a stationary GEV distribution to these data,
we get:

µ̂ = 1.482(0.017) σ̂ = 0.141(0.011) ξ̂ = −0.217(0.064),

with a maximised log–likelihood of 43.6.

Fitting the model which allows for a trend in time, we get:

β̂0 = 1.387(0.027) β̂1 = 0.002(0.0005)

σ̂ = 0.124(0.010) ξ̂ = −0.128(0.068)

with a maximised log–likelihood of 49.79.
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2.2 Non–stationarity: trend

Referring

D = 2 {49.79 − 43.6}

= 12.38

to χ2
1 tables, we have a significant result, suggesting that the model

which includes a linear trend in time for µ explains substantially
more of the variation in the data than the stationary model.

Figure 13 shows the time series plot of the Fremantle sea level
data with fitted estimates for µ superimposed.

Also shown, for comparison, is the fitted estimate for µ under the
stationary model.
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2.2 Non–stationarity: trend
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2.2 Non–stationarity: trend

We find that the model which allows for a trend in µ depending on
both time and SOI is the best one for our data. In fact, we get:

β̂0 = 1.389(0.027) β̂1 = 0.002(0.0005) β̂2 = 0.055(0.020)

σ̂ = 0.121(0.010) ξ̂ = −0.154(0.064)

giving

µ̂ = 1.389 + 0.002t + 0.055SOI(t).

Of course, more exotic model structures can be incorporated into
this framework, including quadratic models, higher–order
polynomial models, and models which allow for non–normal error
structures.

Trend can also be incorporated into the other GEV/GPD model
parameters.
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2.3 Non–stationarity: seasonality

The most widely adopted technique is to partition the data into
“seasons”:

Fit a separate GEV/GPD to data within each season (wherein
the data are approximately stationary)

These seasons might be ‘winter’ and summer’, ’dry’ and ’wet’

Where seasons are not as clearly defined, we could fit to
separate months or years (see, for example, Part 5 this
afternoon)

But then how do we ’recombine’ seasonally varying parameter
estimates to obtain overall return levels?
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2.3 Non–stationarity: seasonality

We could also allow the extremal parameters to vary continuously
throughout the period of seasonality.

Fourier forms can be fitted to the parameters, and a model
selected based on likelihood ratio tests.

However, Walshaw (1991) suggests that inferences are barely
altered in relation to a piecewise seasonality approach (for extreme
wind gusts, anyway).
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2.3 Non–stationarity: seasonality

Another pragmatic approach is to only consider the season in
which the ’most extreme’ extremes occur.

Relative to this season, extremes in other seasons wont actually be
extreme anyway!
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