5 Bayesian inference for extremes

Throughout this short course, the method of maximum likedhhas provided a general and
flexible technique for parameter estimation. Given a (geh@arameter vectoty within a
family ¥, the likelihood function is the probability (density) ofetlobserved data as a function
of ¢. Values ofy that have high likelihood correspond to models which givghtprobability
to the observed data. The principle of maximum likelihootinestion is to adopt the model
with greatest likelihood; of all the models under consitierg this is the one that assigns
the highest probability to the observed data. Other infeakprocedures, such as “method
of moments”, provide viable alternatives to maximum likelbd estimation; moments—based
techniques choosg optimally by equating model-based and empirical momenmis salving
for 1 to obtain parameter estimates. These, and other proce@uigsas probability weighted
moments,L—moments and ranked set estimation), are discussed i getaimongst other
places, Kotz and Nadarajah (2000).

5.1 General theory

Bayesian techniques offer an alternative way to draw imiege from the likelihood func-
tion, which many practitioners often prefer. As in the noay8sian setting, we assume data
x = (x1,...,,)to be realisations of a random variable whose density fatlsima parametric
family 7 = {f(x; %) : ¥ € ¥}. However, parameters of a distribution are now treatedras ra
dom variables, for which we specifyrior distributions— distributions of the parametepsior

to the inclusion of data. The specification of these priotriistions enables us to supplement
the information provided by the data — which, in extreme ganalyses, is often very limited
— with other sources of information. At the same time, it carcbntended that, since different
analysts might specify different priors, conclusions lmesubjective.

Leaving aside the arguments for and against the Bayesiahoah@bgy, suppose we model
our observed data using the probability density functiof{x; ). The likelihood function for
1 is thereforeL(y|x) = f(x; ). Also, suppose our prior beliefs about likely valueg/oére
expressed by the probability density functiofyy). We can combine both pieces of information
using Bayes Theorem, which states that

T(Yle) = ——~—, (16)
where

/w(w)L(zMw)dw if 7 is continuous
v

flx) =
> w()L(plz)  if 4 is discrete.

v

Sincef(x) is not a function of), Bayes Theorem can be written as

m(Yle) o w(yp) x L(v|x)

i.e. posterior oc prior x likelihood.

In equation (16)s(v|x) is theposteriordistribution of the parameter vectar, ¢» € ¥, i.e.
the distribution ofy after the inclusion of the data. This prior distribution is oftehgreat
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interest, since the prior—posterior changes represemtidueges in our beliefs after the data has
been included in the analysis. However, computation of #dhinator in (16) can be prob-
lematic, and usually analytically intractable. There ithirog particularly special about the fact
that equation (16) represents a Bayesian posterior; givgo@nmplex non—standard probability
distribution, we need ways to understand it, to calculatenbments, to compute its conditional
and marginal distributions and their moments, all of whiohld require troublesome integra-
tion as in the denominator of equation (16). We need a way @érstanding posterior densities
which does not rely on being able to analytically integratekernel of the posterior; stochastic
simulation is one possible solution.

5.2 Markov chain Monte Carlo

The recent explosion in Markov chain Monte Carlo (MCMC) teicjues owes largely to their
application in Bayesian inference. The idea here is to predimulated values from the poste-
rior distribution — not exactly, as this is usually unaclaieke, but through an appropriate MCMC
technique.

5.2.1 The Gibbs sampler

The Gibbs sampler is a way of simulating from multivariatstdbutions based only on the
ability to simulate from conditional distributions. Suggothe density of interest (usually the
posterior density) is (), wherey = (¢4, . ..,1y)’, and that the full conditionals

ﬂ-(wihbl) C 7¢i—17wi+17 C 7¢d) = ﬂ-(wih/}—i) = ﬂ-i(wi)v 1= ]-7 ce 7d

are available for simulating from/(_; denotes the parameter vectbexcludingy;). The Gibbs
sampler uses the following algorithm:

1. Ini(ti?lise th(e) iteration counter tb = 1. Initialise the state of the chain w@® =
( 1O [ dO )/;

2. Obtain a new value® from ¢*~Y by successive generation of values

k k—1 k—1
k k k— k—
I G AR L ST )

k k k
O~ walv®, ),

3. Change countérto £ + 1, and return to step 2.

Each simulated value depends only on the previous simwaiee, and not any other previous
values or the iteration countér The Gibbs sampler can be used in isolation if we can readily
simulate from the full conditional distributions; howey#ris is not always the case. Fortu-
nately, the Gibbs sampler can be combined with Metropolastiigs schemes when the full
conditionals are difficult to simulate from.
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5.2.2 Metropolis—Hastings sampling

Suppose again that(1) is the density of interest. Further, suppose that we havee sini-
trary transition kerneb(v,, ,, v;) (which is easy to simulate from) for iterative simulation of
successive values. Then consider the following algorithm:

1. Initialise the iteration counter to= 1, and initialise the chain t¢);
2. Generate a proposed valpéusing the kerneb(¢p* Y 4p');

3. Evaluate thecceptance probabilityl(zp(’“), 1)) of the proposed move, where

() L )p( ) |
m'”{l’ () L($l)p(ah, ) }

A, ')

4. Putyp® = ¢ with probability A(xp* =V 44"), and putp®™ = ¢p*~V otherwise;
5. Change the counter fromto & + 1 and return to step 2.

So at each stage, a new value is generated from the propss#ution. This is either accepted,
in which case the chain moves, or rejected, in which casetthim stays where it is. Whether or
not the move is accepted or rejected depends on the acceeoimability which itself depends
on the relationship between the density of interest and tbpgsal distribution. Common
choices for the proposal distribution include symmetriaiok, wherep(1, ¥') = p(', 1),
and random walk chains, where the propagaht iterationk is 1’ = 1) + <5, where the:;, are
[ID random variables.

5.2.3 Hybrid methods

Here, we combine Gibbs sampling and Metropolis—Hastingsrees to form hybrid Markov
chains whose stationary distribution is the distributiémnderest. For example, given a mul-
tivariate distribution whose full conditionals are awkdao simulate from directly, we can
define a Metropolis—Hastings scheme for each full condicend apply them to each compo-
nent in turn for each iteration. This is similar to Gibbs séingp but each component update
is a Metropolis—Hastings update, instead of a direct sitraridrom the full conditional. An-
other scheme, known as “Metropolis within Gibbs”, goes tigio each full conditional in turn,
simulating directly from the full conditionals wherevergsible, and carrying out a Metropolis—
Hastings update elsewhere.

5.3 Bayesian inference for extremes

There are various (and some may say compelling) reasonsdterpng a Bayesian analysis
of extremes over the more traditional likelihood approakh already discussed, since extreme
data are (by their very nature) quite scarce, the abilithwtmiporate other sources of informa-
tion through a prior distribution has obvious appeal. Bayégorem also leads to an inference
that comprises a complete distribution, meaning that thenee of the posterior distribution,
for example, can be used to summarise the precision of tieeeinfe, without having to rely
upon asymptotic theory. Also, implicit in the Bayesian femork is the concept of thpre-
dictive distribution This distribution describes how likely are different carres of a future
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experiment. The predictive probability density functisrgiven by

fylz) = A £ () (4| )dap (17)

whena) is continuous. From equation (17), we can see that the gieglitistribution is formed
by weighting the possible values fgrin the future experiment(y|«) by how likely we believe
they are to occur after seeing the data. For example, a suitaddel for the threshold excess
Y of a process i ~ GPD(s, ). Estimation ofyy = (o, &) could be made on the basis of
previous observations = (x1, ..., x,). Thus, in the Bayesian framework, we would have

Pr{Y <uylzy,...,z,} = [p Pr{Y < y|v} n(¢|x)dv. (18)

Equation (18) gives the distribution of a future threshotdess, allowing for both parameter
uncertainty and randomness in future observations. Splvin

Pr{Y < ¢ pred®1, ..., 20} = 1— %
for ¢, prea therefore gives an estimate of theyear return level that incorporates uncertainty due
to model estimation. Though (17) may seem analyticallyactble, it can be approximated
if the posterior distribution has been estimated usingef@mple, MCMC. After removal of
the “burn—in” period, the MCMC procedure gives a sample. . ., 15 that can be regarded as
realisations from the stationary distributiefw)|x). Thus

B
1
PF{Y < Qr,pred|l'17 e 7xn} ~ E E PF{Y < anredhpi}v
=1

which we can solve fog, yeq USiNg a numerical solver. Another reason lending appeal to
Bayesian inference for extremes is that it is not dependerihe regularity assumptions re-
quired by the theory of maximum likelihood. For example, wije< —0.5, maximum like-
lihood estimation breaks down — in this situation, a Bayesipproach provides a feasible
alternative.

5.3.1 Example: Annual maximum sea levels: Port Pirie, Soutlustralia

Figure 18 shows a time series plot of annual maximum seade¢@nother Australian location

— Port Pirie, in South Australia. Notice that, unlike theresponding data from Fremantle in

Wester Australia, there doesn't appear to be any trend snsiiies; in fact, the series appear
stationary.

We use the GEV as a model for the annual maximum sea levelsraPR@ Z; in year i,
le.

Z; ~ GEV(u,0,¢), 1=1,...,65.

When employing MCMC methods it is common to re—parametehseGEV scale parameter
and work withn = log(o) to retain the positivity of this parameter. In the absencanyfexpert
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Figure 18: Time series plot of annual maximum sea levelsrobdeat Port Pirie.

prior information regarding the three parameters of the GEstribution, we adopt a ‘naive’
approach and use largely non—informative, independeatpfor these, namely

7(n) ~ N(0,10000),
m(n) ~ N(0,10000) and
w(&) ~ N(0,100),

the large variances of these distributions imposing nesrpflors.

We use a Metropolis—Hastings MCMC sampling scheme; aftiingeinitial starting values
for ¢ = (u,n,§), we use an arbitrary probability rulgp, ,|v) for iterative simulation of
successive values in the chain. Once this rule has been agmhérate a candidate valye
for 4, ,, we accept this with probabilityl (see 5.2.2); otherwise};,,, = ;. Here, we use a
random walkprocedure to generate candidate values, i.e.

/

o= i€y
n o= n+e and
5/ ey gl + 657

with the e being normally distributed with zero mean and varianggs,, andv, respectively.
In fact, the choice of algorithm and its ‘tuning parametéts’, v, andv,) does not affect the
model. It does, however, affect the efficiency of the aldont Some believe there is a ‘fine art’
to tuning the algorithm used, but it is common to aim for anrallecceptance rate of around
30%.

Initialising with ¢»*) = (5,0.5,0.1), we get the following values generated by 5000 iterations
of the MCMC scheme (see Figure 19). The settling—in peri@irseto take around 300 iter-
ations, after which the chain seems to have converged. €tigg—in period is often known
as theburn—in Thus, after deleting the first 300 simulations, the renmagjrd700 simulated
values can be treated as dependent realisations whosenaladggtribution is the target pos-
terior. Over-leaf, in Figure 20, is a panel of plots corragfing to the sampling distributions
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of the three GEV parameters (after the removal of burn—ig)wall as the 100-year return
level. The sampling distribution for the posterior of theura level has been obtained by inver-

sion of the distribution function for the GEV (Equation 1)datien by repeated substitution of
M(301), 0(301)’ 5(301)7 o M(5OOO)> 0(5000)7 5(5000)_

The posterior means, standard deviations and 95% creditdevals are shown in Table 4,
along with the corresponding maximum likelihood estimdétesomparison.
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Figure 19: MCMC realisations of the GEV parameters in a Bayeanalysis of the Port Pirie
sea level maxima.

L o § q100
Posterior _mean (st. dev)3.874 (0.028)| 0.203 (0.021)| —0.024 (0.098)| 4.788 (0.255)

distributon ~ 95% Cl | (3.819, 3.932) (0.166, 0.249) (-0.196, 0.182) (4.516, 5.375
Maximum  m.le. (s.e.) | 3.872 (0.028)| 0.198 (0.020)| -0.040 (0.098)| 4.692 (0.158)
likelihood 95% Cl | (3.821, 3.930) (0.158, 0.238) (—0.242, 0.142) (4.501, 5.270

Table 4: Summary statistics for the posterior locationlesaad shape, and the 100—year return
level. Shown also, for comparison, are the correspondihg 1s.the confidence interval for the
return level being found via profile likelihood.
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Figure 20: Sampling distributions for the posterior daasibfy, o, ¢ and the 100—year return
level.

5.3.2 More complex structures: A random effects model for etxeme wind speeds

In this section we briefly discuss the work which Lee Fawceitpwesent at next week’s TIES
conference. In this work, we develop a hierarchical modehfaurly maximum wind speeds
over a region of central and northern England. The data usesist of hourly gust maximum
wind speeds recorded for the British Meteorological Officeneelve locations (see Figure 21).
We construct a model which is based on a standard limitingeme value distribution, but
incorporates random effects for the sites, for seasonati@mn, and for the serial dependence
inherent in the time series of hourly maximum speeds obthatecach site. The Bayesian
paradigm provides the most feasible modelling approachafiiuce the rich meteorological
structure present in these data. Figure 22 illustrates ploetory analysis of data from two
contrasting sites, Nottingham and Bradfield. Shown are sengs plots of the hourly maxima,
histograms, and a plot of the time series against the veediteg 1. The first three years of
data only are used in each case, to best illustrate the reldaga characteristics. We now (very
briefly) outline the model structure used.

Modelling threshold exceedances

We will start with the Generalised Pareto Distribution as @del for threshold excesses; by
doing so, we can incorporate more extreme data in our asalyan if we were to select “block
maxima”, and so increase the precision of our analysis. ;i speed excesses over a high
threshold will be modelled with a GRDB, ¢).
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Figure 21: Location of wind speed stations.
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Figure 22: Time series plots and histograms of hourly gus¢eved at Bradfield (top row) and
Nottingham (bottom row) over a three year period (1975-li8¢lusive). Also shown are plots
of the time series against the lagged series.

Site and seasonal variability

For our purposes, we need the GPD parameters to vary actessasd seasonally. We take
a pragmatic approach to seasonality, partitioning the alneycle into twelve ‘months’. Thus
our hierarchical model will need to yield parameter pairs, ;, &, ;) for m = 1,...,12 and
j=1,...,12, wherem and; are indices of season and site respectively. It is also saces
to allow the threshold used for excesses modelled by the GPD to vary, since differgaria
about what constitutes an extreme value will be in play feheambination of season and site.
We will denote byu,, ; the value of the exceedance threshold for montand site;.

Temporal dependence

To account for the presence of temporal dependence witlin ®ason and site, we now adopt
approach 3 outlined in Section 2.1.3; specifically, we usariate extreme value theory dis-
cussed in Part 4 of this short course to formulate a simple-irder Markov chain structure
for successive extreme wind speeds. As with fitting to akkshold exceedances and then ad-
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justing the inferences accordingly (as we recommended thithNewlyn sea—surge data in
Section 2.1.4), this approach avoids the need to arbitraténtify clusters of extremes and
filter out a set of independent extreme values (thus disegnaiany precious extremes!), but
also quantifies the extent of extremal dependence at ea&chRsit simply, at each site, the lo-
gistic model with parametet; (discussed in Part 4) is used to model each successive pair of
threshold exceedances (say, ;1)) at sitej. The parametet; < (0, 1] measures the strength
of dependence between consecutive extremes, smallersvaldieating stronger dependence.
Independence and complete dependence are obtainedayhent anda; ™\, 0 respectively.
Following work in Fawcett (2005), which suggests that theaselependence in extremes is
fairly constant across all seasons, we assume that the Mahkeon model describes the depen-
dence over all seasons at sjte

Threshold stability property

In order to ensure a threshold stability property in our nt@dee uses,, ; = oy ;j — &m,jlm,;

in place of the usual scale parametgy ;. With this parameterisation, X — vy, .) is dis-
tributed GPDg,,, j, &m,5), then for all valuesu,,; > uy, ., we have tha{X — u,, ;) is also
GPD@ . ;, {m,;) distributed (e.g. see Coles (2001)). This is useful hezeabse it allows com-
parisons of the GPD scale and shape parameters across seasbsites. It also allows us
to specify prior information for both parameters withouving to worry about the additional
complications that would arise for parameters which weresthold dependent.

The model
We then specify the following random effects model for oureme wind speeds:

l0g(6,n;) = ’}/ém)—FEéj),

Emj = vém) +e§j) and
Oéj = Eg),

where, generically; and e represent seasonal and site effects respectively. We wihk w
log(é., ;) for computational convenience, and to retain the posytivit the scale parameter
om,j- All random effects for lo¢,, ;) and¢,, ; are taken to be normally and independently
distributed:
(M~ No(0,7;)  and (19)

B~ No(0,7),  m=1,...,12, (20)
for the seasonal effects, and

Eg) ~ N()(CL&, C&) and

Eg) ~ N(KCL&,C&), j: 1,...,12,
for the site effects, wher®(n, p) is the normal distribution with meapandprecisiony (used
for notational convenience). We choose the mean of the dadistibution of the seasonal
effects to be fixed at zero in (19) and (20) in order to avoid-eparameterisation and problems

of model identifiability, although we could equally well reafrxed the mean for the distribution
of the site effects to achieve this. In the absence of any prior knowdealgputo;, we set the

prior by specifying
¥~ U(0,1).
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The final layer of the model is the specification of prior disitions for the random effect
distribution parameters. Here we adopt conjugacy whemgessible to simplify computations,

specifying:

Ag ~ No(bmc&), Qg ~ No(b§705);
75 ~ Ga(ds, ez), Te ~ Ga(dg, e¢);
Co ~ Ga’(f&vg(})v Cg n~ Ga(fg,gg);

subject to the choice of arguments for these functionstheehyper—parameters which deter-
mine the precise Normal and Gamma distributions.

MCMC algorithm

We use a hybrid scheme (see Section 5.2.3) — specificallyrtyetis with Gibbs’ — to sample
form the posteriors. This means we update each compongty sising a Gibbs sampler where
the conjugacy allows straightforward sampling from thédohditionals, and a Metropolis step
elsewhere.

Some results
Some results are shown in Figures 23-26 and in Table 5. The poants to notice are listed
below:

— Advantage of the hierarchical model over a standard hkeld—based analysis: a reduc
tion in sampling variation (posterior standard deviationghe bottom portion of Table
5 are substantially smaller than the corresponding stanelaors) due to the pooling of
information across sites and seasons

— Figure 25 further highlights this reduction in varialyilt notice theshrinkagean estimates
of the GPD shape parametein the Bayesian analysis relative to the standard likeliroo
based analysis

— Separate seasonal parameters are recombined for eadb siéain site—by—site esti-
mates of return levels (see Figure 25, bottom right); notie estimates of extreme
quantiles using maximum likelihood estimation can be vergtable, whereas the hier-
archical model achieves a greater degree of stability tiirdbe pooling of information
across sites

— Figure 26 shows an extensiongeedictive return levelswhich cannot be achieved under
the classical approach to inference
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Figure 24: MCMC output for Bradfield in January

Bradfield, January Nottingham, July
Mean (st. dev.MLE (asymp. s.e.) Mean (st. dev.MLE (asymp. s.e.)
{m) 1.891 (0.042) 1.294 (0.042)
o 0.021 (0.018) 0.002 (0.018)
) 0.367 (0.044) —0.121 (0.041)
e —0.105 (0.020) ~0.059 (0.017)
eij) 0.385 (0.009) 0.300 (0.011)
G 7.267 (0.2118.149 (0.633) 3.234 (0.0611.914 (0.163)
¢m;  —0.084 (0.015)-0.102 (0.055) —0.057 (0.013p.018 (0.044)
a; 0.385 (0.009).368 (0.012) 0.400 (0.011).412 (0.020)

Table 5: Bayesian random effects analysis of extreme wiegdp — Bradfield (January) and
Nottingham (July)
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Figure 26: Predictive return level curves for Bradfield)(and Nottingham (- - - -).
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