
5 Bayesian inference for extremes

Throughout this short course, the method of maximum likelihood has provided a general and
flexible technique for parameter estimation. Given a (generic) parameter vectorψ within a
family Ψ, the likelihood function is the probability (density) of the observed data as a function
of ψ. Values ofψ that have high likelihood correspond to models which give high probability
to the observed data. The principle of maximum likelihood estimation is to adopt the model
with greatest likelihood; of all the models under consideration, this is the one that assigns
the highest probability to the observed data. Other inferential procedures, such as “method
of moments”, provide viable alternatives to maximum likelihood estimation; moments–based
techniques chooseψ optimally by equating model–based and empirical moments, and solving
for ψ to obtain parameter estimates. These, and other procedures(such as probability weighted
moments,L–moments and ranked set estimation), are discussed in detail in, amongst other
places, Kotz and Nadarajah (2000).

5.1 General theory

Bayesian techniques offer an alternative way to draw inferences from the likelihood func-
tion, which many practitioners often prefer. As in the non–Bayesian setting, we assume data
x = (x1, . . . , xn) to be realisations of a random variable whose density falls within a parametric
family F = {f(x;ψ) : ψ ∈ Ψ}. However, parameters of a distribution are now treated as ran-
dom variables, for which we specifyprior distributions– distributions of the parametersprior
to the inclusion of data. The specification of these prior distributions enables us to supplement
the information provided by the data – which, in extreme value analyses, is often very limited
– with other sources of information. At the same time, it can be contended that, since different
analysts might specify different priors, conclusions become subjective.

Leaving aside the arguments for and against the Bayesian methodology, suppose we model
our observed datax using the probability density functionf(x;ψ). The likelihood function for
ψ is thereforeL(ψ|x) = f(x;ψ). Also, suppose our prior beliefs about likely values ofψ are
expressed by the probability density functionπ(ψ). We can combine both pieces of information
using Bayes Theorem, which states that

π(ψ|x) =
π(ψ)L(ψ|x)

f(x)
, (16)

where

f(x) =



















∫

Ψ

π(ψ)L(ψ|x)dψ if ψ is continuous,

∑

Ψ

π(ψ)L(ψ|x) if ψ is discrete.

Sincef(x) is not a function ofψ, Bayes Theorem can be written as

π(ψ|x) ∝ π(ψ) × L(ψ|x)

i.e. posterior ∝ prior× likelihood.

In equation (16),π(ψ|x) is theposteriordistribution of the parameter vectorψ, ψ ∈ Ψ, i.e.
the distribution ofψ after the inclusion of the data. This prior distribution is often of great
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interest, since the prior–posterior changes represent thechanges in our beliefs after the data has
been included in the analysis. However, computation of the denominator in (16) can be prob-
lematic, and usually analytically intractable. There is nothing particularly special about the fact
that equation (16) represents a Bayesian posterior; given any complex non–standard probability
distribution, we need ways to understand it, to calculate its moments, to compute its conditional
and marginal distributions and their moments, all of which could require troublesome integra-
tion as in the denominator of equation (16). We need a way of understanding posterior densities
which does not rely on being able to analytically integrate the kernel of the posterior; stochastic
simulation is one possible solution.

5.2 Markov chain Monte Carlo

The recent explosion in Markov chain Monte Carlo (MCMC) techniques owes largely to their
application in Bayesian inference. The idea here is to produce simulated values from the poste-
rior distribution – not exactly, as this is usually unachievable, but through an appropriate MCMC
technique.

5.2.1 The Gibbs sampler

The Gibbs sampler is a way of simulating from multivariate distributions based only on the
ability to simulate from conditional distributions. Suppose the density of interest (usually the
posterior density) isπ(ψ), whereψ = (ψ1, . . . , ψd)

′, and that the full conditionals

π(ψi|ψ1, . . . , ψi−1, ψi+1, . . . , ψd) = π(ψi|ψ−i) = πi(ψi), i = 1, . . . , d

are available for simulating from (ψ−i denotes the parameter vectorψ excludingψi). The Gibbs
sampler uses the following algorithm:

1. Initialise the iteration counter tok = 1. Initialise the state of the chain toψ(0) =
(ψ

(0)
1 , . . . , ψ

(0)
d )′;

2. Obtain a new valueψ(k) fromψ(k−1) by successive generation of values

ψ
(k)
1 ∼ π(ψ1|ψ

(k−1)
2 , . . . , ψ

(k−1)
d )

ψ
(k)
2 ∼ π(ψ2|ψ

(k)
1 , ψ

(k−1)
3 , . . . , ψ

(k−1)
d )

...
...

ψ
(k)
d ∼ π(ψd|ψ

(k)
1 , . . . , ψ

(k)
d−1);

3. Change counterk to k + 1, and return to step 2.

Each simulated value depends only on the previous simulatedvalue, and not any other previous
values or the iteration counterk. The Gibbs sampler can be used in isolation if we can readily
simulate from the full conditional distributions; however, this is not always the case. Fortu-
nately, the Gibbs sampler can be combined with Metropolis–Hastings schemes when the full
conditionals are difficult to simulate from.
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5.2.2 Metropolis–Hastings sampling

Suppose again thatπ(ψ) is the density of interest. Further, suppose that we have some arbi-
trary transition kernelp(ψi+1,ψi) (which is easy to simulate from) for iterative simulation of
successive values. Then consider the following algorithm:

1. Initialise the iteration counter tok = 1, and initialise the chain toψ(0);

2. Generate a proposed valueψ′ using the kernelp(ψ(k−1),ψ′);

3. Evaluate theacceptance probabilityA(ψ(k),ψ′) of the proposed move, where

A(ψ,ψ′) = min

{

1,
π(ψ′)L(ψ′|x)p(ψ′,ψ)

π(ψ)L(ψ|x)p(ψ,ψ′)

}

;

4. Putψ(k) = ψ′ with probabilityA(ψ(k−1),ψ′), and putψ(k) = ψ(k−1) otherwise;

5. Change the counter fromk to k + 1 and return to step 2.

So at each stage, a new value is generated from the proposal distribution. This is either accepted,
in which case the chain moves, or rejected, in which case the chain stays where it is. Whether or
not the move is accepted or rejected depends on the acceptance probability which itself depends
on the relationship between the density of interest and the proposal distribution. Common
choices for the proposal distribution include symmetric chains, wherep(ψ,ψ′) = p(ψ′,ψ),
and random walk chains, where the proposalψ′ at iterationk isψ′ = ψ + εk, where theεk are
IID random variables.

5.2.3 Hybrid methods

Here, we combine Gibbs sampling and Metropolis–Hastings schemes to form hybrid Markov
chains whose stationary distribution is the distribution of interest. For example, given a mul-
tivariate distribution whose full conditionals are awkward to simulate from directly, we can
define a Metropolis–Hastings scheme for each full conditional, and apply them to each compo-
nent in turn for each iteration. This is similar to Gibbs sampling, but each component update
is a Metropolis–Hastings update, instead of a direct simulation from the full conditional. An-
other scheme, known as “Metropolis within Gibbs”, goes through each full conditional in turn,
simulating directly from the full conditionals wherever possible, and carrying out a Metropolis–
Hastings update elsewhere.

5.3 Bayesian inference for extremes

There are various (and some may say compelling) reasons for preferring a Bayesian analysis
of extremes over the more traditional likelihood approach.As already discussed, since extreme
data are (by their very nature) quite scarce, the ability to incorporate other sources of informa-
tion through a prior distribution has obvious appeal. Bayes’ Theorem also leads to an inference
that comprises a complete distribution, meaning that the variance of the posterior distribution,
for example, can be used to summarise the precision of the inference, without having to rely
upon asymptotic theory. Also, implicit in the Bayesian framework is the concept of thepre-
dictive distribution. This distribution describes how likely are different outcomes of a future
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experiment. The predictive probability density function is given by

f(y|x) =

∫

Ψ

f(y|ψ)π(ψ|x)dψ (17)

whenψ is continuous. From equation (17), we can see that the predictive distribution is formed
by weighting the possible values forψ in the future experimentf(y|ψ) by how likely we believe
they are to occur after seeing the data. For example, a suitable model for the threshold excess
Y of a process isY ∼ GPD(σ, ξ). Estimation ofψ = (σ, ξ) could be made on the basis of
previous observationsx = (x1, . . . , xn). Thus, in the Bayesian framework, we would have

Pr{Y ≤ y|x1, . . . , xn} =

∫

Ψ

Pr{Y ≤ y|ψ}π(ψ|x)dψ. (18)

Equation (18) gives the distribution of a future threshold excess, allowing for both parameter
uncertainty and randomness in future observations. Solving

Pr{Y ≤ qr,pred|x1, . . . , xn} = 1 −
1

r

for qr,pred therefore gives an estimate of ther–year return level that incorporates uncertainty due
to model estimation. Though (17) may seem analytically intractable, it can be approximated
if the posterior distribution has been estimated using, forexample, MCMC. After removal of
the “burn–in” period, the MCMC procedure gives a sampleψ1, . . . ,ψB that can be regarded as
realisations from the stationary distributionπ(ψ|x). Thus

Pr{Y ≤ qr,pred|x1, . . . , xn} ≈
1

B

B
∑

i=1

Pr{Y ≤ qr,pred|ψi} ,

which we can solve forqr,pred using a numerical solver. Another reason lending appeal to
Bayesian inference for extremes is that it is not dependent on the regularity assumptions re-
quired by the theory of maximum likelihood. For example, when ξ < −0.5, maximum like-
lihood estimation breaks down – in this situation, a Bayesian approach provides a feasible
alternative.

5.3.1 Example: Annual maximum sea levels: Port Pirie, SouthAustralia

Figure 18 shows a time series plot of annual maximum sea levels at another Australian location
– Port Pirie, in South Australia. Notice that, unlike the corresponding data from Fremantle in
Wester Australia, there doesn’t appear to be any trend in this series; in fact, the series appear
stationary.

We use the GEV as a model for the annual maximum sea levels at Port Pirie Zi in year i,
i.e.

Zi ∼ GEV (µ, σ, ξ) , i = 1, . . . , 65.

When employing MCMC methods it is common to re–parameterisethe GEV scale parameter
and work withη = log(σ) to retain the positivity of this parameter. In the absence ofany expert
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Figure 18: Time series plot of annual maximum sea levels observed at Port Pirie.

prior information regarding the three parameters of the GEVdistribution, we adopt a ‘naive’
approach and use largely non–informative, independent priors for these, namely

π(µ) ∼ N(0, 10000),

π(η) ∼ N(0, 10000) and

π(ξ) ∼ N(0, 100),

the large variances of these distributions imposing near–flat priors.

We use a Metropolis–Hastings MCMC sampling scheme; after setting initial starting values
for ψ = (µ, η, ξ), we use an arbitrary probability rulep(ψi+1|ψ) for iterative simulation of
successive values in the chain. Once this rule has been used to generate a candidate valueψ′

for ψi+1, we accept this with probabilityA (see 5.2.2); otherwise,ψi+1 = ψi. Here, we use a
random walkprocedure to generate candidate values, i.e.

µ′ = µi + ǫµ

η′ = ηi + ǫη and

ξ′ = ξi + ǫξ,

with theǫ being normally distributed with zero mean and variancesvµ, vη andvξ respectively.
In fact, the choice of algorithm and its ‘tuning parameters’(vµ, vη andvξ) does not affect the
model. It does, however, affect the efficiency of the algorithm. Some believe there is a ‘fine art’
to tuning the algorithm used, but it is common to aim for an overall acceptance rate of around
30%.

Initialising withψ(0) = (5, 0.5, 0.1), we get the following values generated by 5000 iterations
of the MCMC scheme (see Figure 19). The settling–in period seems to take around 300 iter-
ations, after which the chain seems to have converged. This settling–in period is often known
as theburn–in. Thus, after deleting the first 300 simulations, the remaining 4700 simulated
values can be treated as dependent realisations whose marginal distribution is the target pos-
terior. Over-leaf, in Figure 20, is a panel of plots corresponding to the sampling distributions
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of the three GEV parameters (after the removal of burn–in), as well as the 100–year return
level. The sampling distribution for the posterior of the return level has been obtained by inver-
sion of the distribution function for the GEV (Equation 1) and then by repeated substitution of
µ(301), σ(301), ξ(301), . . . , µ(5000), σ(5000), ξ(5000).

The posterior means, standard deviations and 95% credible intervals are shown in Table 4,
along with the corresponding maximum likelihood estimatesfor comparison.
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Figure 19: MCMC realisations of the GEV parameters in a Bayesian analysis of the Port Pirie
sea level maxima.

µ σ ξ q100
Posterior mean (st. dev.)3.874 (0.028) 0.203 (0.021) –0.024 (0.098) 4.788 (0.255)

distribution 95% CI (3.819, 3.932) (0.166, 0.249) (–0.196, 0.182) (4.516, 5.375)
Maximum m.l.e. (s.e.) 3.872 (0.028) 0.198 (0.020) -0.040 (0.098) 4.692 (0.158)
likelihood 95% CI (3.821, 3.930) (0.158, 0.238) (–0.242, 0.142) (4.501, 5.270)

Table 4: Summary statistics for the posterior location, scale and shape, and the 100–year return
level. Shown also, for comparison, are the corresponding m.l.e.s, the confidence interval for the
return level being found via profile likelihood.
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Figure 20: Sampling distributions for the posterior densities ofµ, σ, ξ and the 100–year return
level.

5.3.2 More complex structures: A random effects model for extreme wind speeds

In this section we briefly discuss the work which Lee Fawcett will present at next week’s TIES
conference. In this work, we develop a hierarchical model for hourly maximum wind speeds
over a region of central and northern England. The data used consist of hourly gust maximum
wind speeds recorded for the British Meteorological Office at twelve locations (see Figure 21).
We construct a model which is based on a standard limiting extreme value distribution, but
incorporates random effects for the sites, for seasonal variation, and for the serial dependence
inherent in the time series of hourly maximum speeds obtained at each site. The Bayesian
paradigm provides the most feasible modelling approach to capture the rich meteorological
structure present in these data. Figure 22 illustrates an exploratory analysis of data from two
contrasting sites, Nottingham and Bradfield. Shown are timeseries plots of the hourly maxima,
histograms, and a plot of the time series against the versionat lag 1. The first three years of
data only are used in each case, to best illustrate the relevant data characteristics. We now (very
briefly) outline the model structure used.

Modelling threshold exceedances
We will start with the Generalised Pareto Distribution as a model for threshold excesses; by
doing so, we can incorporate more extreme data in our analysis than if we were to select “block
maxima”, and so increase the precision of our analysis. Thus, wind speed excesses over a high
threshold will be modelled with a GPD(σ, ξ).
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Figure 21: Location of wind speed stations.
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Figure 22: Time series plots and histograms of hourly gusts observed at Bradfield (top row) and
Nottingham (bottom row) over a three year period (1975–1977inclusive). Also shown are plots
of the time series against the lagged series.

Site and seasonal variability
For our purposes, we need the GPD parameters to vary across sites, and seasonally. We take
a pragmatic approach to seasonality, partitioning the annual cycle into twelve ‘months’. Thus
our hierarchical model will need to yield parameter pairs(σm,j , ξm,j) for m = 1, . . . , 12 and
j = 1, . . . , 12, wherem andj are indices of season and site respectively. It is also necessary
to allow the thresholdu used for excesses modelled by the GPD to vary, since different criteria
about what constitutes an extreme value will be in play for each combination of season and site.
We will denote byum,j the value of the exceedance threshold for monthm and sitej.

Temporal dependence
To account for the presence of temporal dependence within each season and site, we now adopt
approach 3 outlined in Section 2.1.3; specifically, we use bivariate extreme value theory dis-
cussed in Part 4 of this short course to formulate a simple first–order Markov chain structure
for successive extreme wind speeds. As with fitting to all threshold exceedances and then ad-
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justing the inferences accordingly (as we recommended withthe Newlyn sea–surge data in
Section 2.1.4), this approach avoids the need to arbitrarily identify clusters of extremes and
filter out a set of independent extreme values (thus discarding many precious extremes!), but
also quantifies the extent of extremal dependence at each site. Put simply, at each site, the lo-
gistic model with parameterαj (discussed in Part 4) is used to model each successive pair of
threshold exceedances (say (xi, xi+1)) at sitej. The parameterαj ∈ (0, 1] measures the strength
of dependence between consecutive extremes, smaller values indicating stronger dependence.
Independence and complete dependence are obtained whenαj = 1 andαj ց 0 respectively.
Following work in Fawcett (2005), which suggests that the serial dependence in extremes is
fairly constant across all seasons, we assume that the Markov chain model describes the depen-
dence over all seasons at sitej.

Threshold stability property
In order to ensure a threshold stability property in our models, we usẽσm,j = σm,j − ξm,jum,j

in place of the usual scale parameterσm,j . With this parameterisation, if(X − u∗m,j) is dis-
tributed GPD(̃σm,j , ξm,j), then for all valuesum,j > u∗m,j, we have that(X − um,j) is also
GPD(̃σm,j , ξm,j) distributed (e.g. see Coles (2001)). This is useful here, because it allows com-
parisons of the GPD scale and shape parameters across seasons and sites. It also allows us
to specify prior information for both parameters without having to worry about the additional
complications that would arise for parameters which were threshold dependent.

The model
We then specify the following random effects model for our extreme wind speeds:

log(σ̃m,j) = γ
(m)
σ̃ + ǫ

(j)
σ̃ ,

ξm,j = γ
(m)
ξ + ǫ

(j)
ξ and

αj = ǫ(j)α ,

where, generically,γ and ǫ represent seasonal and site effects respectively. We work with
log(σ̃m,j) for computational convenience, and to retain the positivity of the scale parameter
σ̃m,j . All random effects for log(σ̃m,j) and ξm,j are taken to be normally and independently
distributed:

γ
(m)
σ̃ ∼ N0(0, τσ̃) and (19)

γ
(m)
ξ ∼ N0(0, τξ), m = 1, . . . , 12, (20)

for the seasonal effects, and

ǫ
(j)
σ̃ ∼ N0(aσ̃, ζσ̃) and

ǫ
(j)
ξ ∼ N0(aξ, ζξ), j = 1, . . . , 12,

for the site effects, whereN0(η, ρ) is the normal distribution with meanη andprecisionρ (used
for notational convenience). We choose the mean of the normal distribution of the seasonal
effects to be fixed at zero in (19) and (20) in order to avoid over–parameterisation and problems
of model identifiability, although we could equally well have fixed the mean for the distribution
of thesiteeffects to achieve this. In the absence of any prior knowledge aboutαj , we set the
prior by specifying

ǫ(j)α ∼ U(0, 1).
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The final layer of the model is the specification of prior distributions for the random effect
distribution parameters. Here we adopt conjugacy whereverpossible to simplify computations,
specifying:

aσ̃ ∼ N0(bσ̃, cσ̃), aξ ∼ N0(bξ, cξ);

τσ̃ ∼ Ga(dσ̃, eσ̃), τξ ∼ Ga(dξ, eξ);

ζσ̃ ∼ Ga(fσ̃, gσ̃), ζξ ∼ Ga(fξ, gξ);

subject to the choice of arguments for these functions, i.e.the hyper–parameters which deter-
mine the precise Normal and Gamma distributions.

MCMC algorithm
We use a hybrid scheme (see Section 5.2.3) – specifically ‘Metropolis with Gibbs’ – to sample
form the posteriors. This means we update each component singly using a Gibbs sampler where
the conjugacy allows straightforward sampling from the full conditionals, and a Metropolis step
elsewhere.

Some results
Some results are shown in Figures 23–26 and in Table 5. The main points to notice are listed
below:

— Advantage of the hierarchical model over a standard likelihood–based analysis: a reduc-
tion in sampling variation (posterior standard deviationsin the bottom portion of Table
5 are substantially smaller than the corresponding standard errors) due to the pooling of
information across sites and seasons

— Figure 25 further highlights this reduction in variability – notice theshrinkagein estimates
of the GPD shape parameterξ in the Bayesian analysis relative to the standard likelihood–
based analysis

— Separate seasonal parameters are recombined for each siteto obtain site–by–site esti-
mates of return levels (see Figure 25, bottom right); noticethat estimates of extreme
quantiles using maximum likelihood estimation can be very unstable, whereas the hier-
archical model achieves a greater degree of stability through the pooling of information
across sites

— Figure 26 shows an extension topredictive return levels, which cannot be achieved under
the classical approach to inference
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Figure 23: Trace plots of the site effects for log(σ̃) for each site in the study
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Figure 24: MCMC output for Bradfield in January

Bradfield, January Nottingham, July
Mean (st. dev.)MLE (asymp. s.e.) Mean (st. dev.)MLE (asymp. s.e.)

γ
(m)
σ̃ 1.891 (0.042) 1.294 (0.042)
γ

(m)
ξ 0.021 (0.018) 0.002 (0.018)

ǫ
(j)
σ̃ 0.367 (0.044) –0.121 (0.041)
ǫ
(j)
ξ –0.105 (0.020) –0.059 (0.017)

ǫ
(j)
α 0.385 (0.009) 0.300 (0.011)
σ̃m,j 7.267 (0.211)8.149 (0.633) 3.234 (0.061)2.914 (0.163)
ξm,j –0.084 (0.015)–0.102 (0.055) –0.057 (0.013)0.018 (0.044)
αj 0.385 (0.009)0.368 (0.012) 0.400 (0.011)0.412 (0.020)

Table 5: Bayesian random effects analysis of extreme wind speeds – Bradfield (January) and
Nottingham (July)
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Figure 25: Posterior means against maximum likelihood estimates of GPD parameters, logistic
dependence parameter and 1000–year return level
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Figure 26: Predictive return level curves for Bradfield (—) and Nottingham (- - - -).
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