
4 Multivariate extremes

4.1 Introduction

In this section we consider the problems we face if we wish to model the extremal behaviour
of two or more (dependent) processes simultaneously. Thereare several reasons why we may
wish to do this:

• to model the extreme behaviour of a particular variable overseveral nearby locations (e.g.
rainfall over a network of sites);

• to model the joint extremes of two or more different variables at a particular location (e.g.
wind and rain at a site);

• to model the joint behaviour of extremes which occur as consecutive observations in a
time–series (e.g. consecutive hourly maximum wind gusts during a storm).

All of these problems suggest fitting an appropriate limiting multivariate distribution to the
relevant data. However, as we shall see, the derivation of such a multivariate distribution is
not as easy as we might hope. The analogy with the Normal distribution as a model for means
breaks down as we move inton dimensions! It is not even clear what the ‘relevant data’ should
be! Most of the increased complexity is apparent in the move from 1 to 2 dimensions, so we
will focus largely on bivariate problems.

4.2 Componentwise maxima models

4.2.1 Example: network of rainfall measurements

Suppose we want to study the joint extremes of daily rainfallaccumulations at the network of 8
sites shown in Figure 14.
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Figure 14: Eight rainfall recording stations in southern Scotland

Such issues are of great interest, especially currently, e.g. given the severe flooding experienced
in the UK recently. Suppose we have sequences of daily total rainfall at each location. There
is liable to be strong inter–site dependence in extremes, inthe sense that days with heavy rain
are liable to occur simultaneously across locations. The raw multivariate observations are8–
dimensional vectors of the daily rainfall over the eight sites.
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Now suppose we wish to take a block–maxima approach, with ‘blocks’ being years. For any
given year, the 8–dimensional vector of annual maxima is unlikely to be one of the raw mul-
tivariate observations. Let’s simplify to the bivariate case. Let(X1, Y1), (X2, Y2), . . . be i.i.d.
vectors with distribution functionF (x, y). Now consider the componentwise block maxima

Mx,n = max
i=1,...,n

{Xi} and My,n = max
i=1,...,n

{Yi}.

We define thevector of componentwise maxima to be

M
n

= (Mx,n,My,n).

M
n

is not necessarily one of the original observations(Xi, Yi). Nevertheless, we are interested
in the limiting behaviour ofM

n
asn → ∞. The first point to note is that standard univariate

extreme value results apply in each margin. When considering the dependence, this allows us
to make a simplifying assumption.

We assume that theXi andYi variables have a known marginal distribution. It is convenient to
assume this is the GEV(0,1,1) distribution, also known as the unit Fréchet distribution, which
has c.d.f.

F (z) = exp(−1/z), z > 0.

This gives rise to a very simple normalization of maxima:

Pr(Xi < x) = Pr(Mx,n/n < x) = exp(−1/x), x > 0,

(and similarly forYi). So if we consider the re–scaled vector

M
∗

n
=

(

max
i=1,...,n

{Xi}/n, max
i=1,...,n

{Yi}/n

)

,

the margins are unit Fréchet for alln, and hence we can characterize the limiting joint behaviour
of M∗

n
without having to worry about the margins. Unfortunately nolimiting parametric family

exists! (for bivariate extremes, or multivariate extremesin general).

4.2.2 Theorem: limiting distributions for bivariate extre mes

Let M∗

n
= (M∗

x,n,M
∗

y,n) be the normalized maxima as above, where the(Xi, Yi) are i.i.d. with
standard Fréchet marginal distributions. Then if

Pr(M∗

x,n,M
∗

y,n) → G(x, y),

whereG is non–degenerate, thenG has the form

G (x, y) = exp {−V (x, y)} ; x > 0, y > 0 (13)

where:

V (x, y) = 2

∫ 1

0

max

(

ω

x
,
1 − ω

y

)

dH (ω) (14)

andH is a distribution function on[0, 1] satisfying the mean constraint:
∫ 1

0

ω dH (ω) = 0.5. (15)
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Hence the class of bivariate extreme value distributions isin one-to-one correspondence with
distribution functionsH satisfying the constraint (15). IfH is differentiable with densityh,
then (14) becomes

V (x, y) = 2

∫ 1

0

max

(

ω

x
,
1 − ω

y

)

h(ω)dω.

However some simple models arise whenH is not differentiable. E.g. ifH places mass0.5 on
each ofω = 0 andω = 1, then we get

G(x, y) = exp{−(x−1 + y−1)}, x > 0, y > 0,

corresponding to independentx andy.

Since the GEV provides the complete class of marginal limit distributions, then the complete
class of bivariate extreme value distributions is obtainedas follows. If we supposeX andY are
GEV with parameters(µx, σx, ξx) and(µy, σy, ξy) respectively, then the transformations

x̃ =

[

1 + ξx

(

x− µx

σx

)]1/ξx

and ỹ =

[

1 + ξy

(

y − µy

σy

)]1/ξy

obtain unit Fréchet margins. Hence

G(x, y) = exp{−V (x̃, ỹ)}

is a bivariate extreme value distribution with the appropriate margins for validV (.), and pro-
vided [1 + ξx(x− µx)/σx] > 0] and[1 + ξy(x− µy)/σy] > 0].

4.2.3 Modelling bivariate extremes in practice

In practice, modelling usually involves identifying a parametric sub–family with appropriate
flexibility to handle the structure inherent in the data. Models can be fitted, e.g. by maximum–
likelihood estimation, either in two steps (marginal components followed by dependence func-
tion), or in a single sweep. All of these procedures, including the choice of models, are handled
in a very similar way when dealing with threshold exceedances. We consider the details in the
next section.

4.3 Threshold excess models

We want to define our bivariate extremes in those observations which exceed a threshold in one
or other margin. For our bivariate observation(X, Y ), let’s focus onX. We have already seen
that the distribution function for the exceedances of a thresholdu by a variableX, conditional
onX > u for large enoughu, is given by:

G(x) = 1 − λ

{

1 +
ξ (x− u)

σ

}

−1/ξ

defined on{x− u : x− u > 0 and (1 + ξ (x− u) /σ) > 0}, whereξ 6= 0, σ > 0, andλ =
Pr (X > u). Now we can obtain a unit Fréchet margin with the transformation:

X̃ = −

(

log

{

1 − λx

[

1 +
ξx (X − ux)

σx

]

−1/ξx

})

−1

.
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If we apply the analogous transformation to in theY margin, we obtain

F̃ (x̃, ỹ) = exp {−V (x̃, ỹ)} ; x > ux, y > uy,

where:

V (x, y) = 2

∫ 1

0

max

(

ω

x
,
1 − ω

y

)

dH (ω)

andH is a distribution function on[0, 1] satisfying the mean constraint:
∫ 1

0

ω dH (ω) = 0.5.

4.3.1 Example: wave–surge data

Here we choose a different type of example of dependence to the rainfall problem considered
in Section 4.2. Here we consider two variables recorded concurrently at the same site. A series
of 3-hourly measurements on sea–surge were obtained from Newlyn, southwest England. For
suitably high thresholds, we can identify which observations are extreme.

4.3.2 Threshold representation

Bivariate threshold models are complicated by the possibility that a bivariate pair(x, y) may be
an ‘exceedance’ and yet exceed the specified threshold in only one of the two components.
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Figure 15: Threshold classification of bivariate data

4.3.3 Modelling the dependence structure

The class of bivariate extreme value models contains many families of distributions which can
be used to model the dependence structure in the data. The dependence structure must satisfy
the conditions onH (ω). Possible choices are:

• Logistic Model — symmetric
• Negative Logistic Model
• Bilogistic Model — asymmetric
• Dirichlet Model

Here we will focus on the logistic model and the bilogistic model as two commonly used but
contrasting choices.
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4.3.4 The Logistic model

G (x, y) = exp
{

−
(

x−1/α + y−1/α
)α
}

wherex > 0, y > 0 andα ∈ (0, 1).

• α → 1 corresponds to independent variables.

• α → 0 corresponds to perfectly dependent variables.

• This model is symmetric — the variables are exchangeable.

4.3.5 The Bilogistic model

G (x, y) = exp
{

xγ1−α + y (1 − γ)1−β
}

where0 < α < 1, 0 < β < 1 andγ = γ (x, y;α, β) is the solution of:

(1 − α) x (1 − γ)β = (1 − β) yγα

• Independence is obtained whenα = β → 1 and when one ofα or β is fixed and the other
approaches 1.

• Whenα = β the model reduces to the logistic model.

• The value ofα− β determines the extent of asymmetry in the dependence structure.

4.3.6 Likelihood calculations

• For points in Region 1, the bivariate model structure shown applies, and the density of
F̃ (x̃, ỹ) gives the appropriate likelihood component.

• In other regions, the likelihood component for the points must be censored.

4.3.7 The likelihood function

The likelihood function can be written as:

L (θ; (x1, y1) , . . . , (xn, yn)) =

n
∏

i=1

ψ (θ; (xi, yi))

whereθ gives the parameters ofF and

ψ (θ; (x, y)) =































∂2F
∂x∂y

∣

∣

∣

(x,y)
if (x, y) ∈ Region 1

∂F
∂x

∣

∣

(x,uy)
if (x, y) ∈ Region 2

∂F
∂y

∣

∣

∣

(ux,y)
if (x, y) ∈ Region 3

F (ux, uy) if (x, y) ∈ Region 4

The various models can be fitted to data by maximum likelihoodestimation using routines
available in theR packageevd. We will explore this in the secondR practical.
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4.4 Point process representation

It helps our understanding of bivariate (and hence multivariate) extremes to think in terms of a
point process model as follows. Let(x1, y1), (x2, y2), . . . be a sequence of independent bivariate
observations form a distribution with standard Fréchet margins such that

Pr{M∗

x,n ≤ x,M∗

y,n ≤ y} → G(x, y).

LetNn be a sequence of point processes defined by

Nn = {(n−1x1, n
−1y1), . . . , (n

−1xn, n
−1yn)}.

Then
Nn → N

on regions bounded away from(0, 0), whereN is a non–homogeneous Poisson process on
(0,∞) × (0,∞). Moreover, if we change our coordinates to an angular-radial form (‘pseudo-
polar’) by setting

r = x and ω =
x

x+ y
,

then the intensity function ofN is

λ(r, ω) = 2
dH(ω)

r2
,

whereH is related toG in the usual way (Equations (13) — (15)). This is helpful becauser
andω are measures of distance (from the origin) and angle (from thex-axis) respectively, and
the dependence functionH determines the angular spread of points ofN , and is independent
of radial distance. If H is differentiable, then sinceω measures the relative size ofx to y in the
pair (x, y), thenh(.) determines the density of events of different relative size. It is fairly easy
now to picture what different densitiesh(.) will look like it terms of the scatter of points in the
limiting point processN .

4.4.1 The point process representation in practice

We assume the Poisson limit to be a reasonable approximationtoNn on an appropriate region.
Convergence is guaranteed on any region bounded from the origin, and things are especially
simple if we choose a region of fromA = {(x, y) : x/n+y/n > r0} for suitably larger0, since
then

Λ(A) = 2

∫

A

dr

r2
dH(ω) = 2

∫

∞

r=r0

dr

r2

∫ 1

ω=0

dH(ω) = 2/r0,

which is constant with respect to the parameters ofH. If we assumeH has densityh, then the
likelihood is given by

L(θ; (x1, y1), . . . , (xn, yn)) = exp{Λ(A)}

NA
∏

i=1

λ(x(i)/n, y(i)/n)

∝

NA
∏

i=1

h(ωi),

whereωi = x(i)/(x(i) + y(i)) for theNA points(x(i), y(i)) which are inA. [This is based on
assuming that we have already transformed the margins so that (x1, y1), . . . , (xn, yn) have stan-
dard Fréchet distributions.] Now we can fit the model using maximum–likelihood estimation.
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4.4.2 Point process model for wave–surge data

A point process model was fitted to the wave–surge data after transformation to unit Fréchet
margins, and using a threshold of the formX + Y = r0, wherer0 was chosen so that the
marginal thresholds are both at the 95th percentile. Fitting the two dependence models (logistic
and bilogistic) to the wave–surge data we obtain the following results:

Model log–lik. α β
Logistic 227.2 0.659 (0.013)

Bilogistic 230.2 0.704 (0.024) 0.603 (0.032)

These results suggest a fairly weak, while clearly significant, dependence. The logistic and
bilogistic models can be compared using a likelihood ratio test, and significant asymmetry is
suggested. It is also possible to produce graphs of the fittedh(ω) functions, with the histograms
of the empiricalω values super–imposed. Here we just show some dependence functions for
the logistic model.
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Figure 16: Some dependence functions for the logisitc model

4.5 Asymptotic dependence and independence

One key problem with using limit distributions for multivariate extremes is that they force one
of two possibilities:

1. extremes occur independently in the different margins;

2. extremes occur with a dependence structure which conforms to an asymptotic extreme
value distribution.
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In practice this imposition is not helpful . . . it is often thecase that asymptotic independence
is suggested by the data, and yet quite strong dependence is present, even at high levels. Data
that seem to be dependent at ordinary levels may not necessarily be dependent in the limiting
distribution. Consider the regionA =

{

X
n
> u, Y

n
> v
}

. Then:

Pr

[(

X

n
,
Y

n

)

∈ A

]

=







C/n, Asymptotic Dependence

C/n2, Exact Independence

whereC is a constant term that does not depend onn.

4.5.1 The coefficient of tail dependence

Consider the variable:
T = min (X, Y ) .

The distribution function ofT is given by:

Pr (T ≤ t) = 1 −
K

t1/δ
, t > u,

whereu is a threshold above which the data are regarded as extreme andK is a (almost) constant
term with respect tot. δ gives a measure of extremal dependence betweenX andY and is
known as the "coefficient of tail dependence".

4.5.2 Inference forδ

The likelihood function forT is:

L (K, δ; t) =

(

1 −
K

u1/δ

)n−nu
(

K

δ

)nu nu
∏

i=1

t
−(1+1/δ)
i

wherenu is the number of observations that satisfyT > u. Maximum likelihood estimation
gives the estimate:

δ̂ =
1

nu

nu
∑

i=1

log

(

ti
u

)

evaluated for thenu points in the data set aboveu. δ describes the limiting dependence structure:

• δ = 1 implies asymptotic dependence.
• 1

2
< δ < 1 implies positive association.

• δ = 1
2

implies near independence.
• 0 < δ < 1

2
implies negative association.
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4.5.3 Wave–surge data

Plots of δ̂ against increasingu give an indication of the level of dependence present between
two processes in the limiting distribution.
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Figure 17: Wave-Surge data with 95% quantiles;δ–plot with 95% confidence bounds.

δ = 1 is within the 95% confidence bounds for allu asu increases, suggesting that wave–
height and surge areasymptotically independent.

Research into modelling data in such instances, i.e. where there is still dependence within the
‘extremes’ in the data set, but yet asymptotic independenceis suggested, is all fairly recent. The
most prominent work is the article by Heffernan and Tawn (JRSS B, 2004). Here they develop
semiparametric models based on assuming observations are extreme in at least one component,
and then conditioning on this. This approach can be quite messy in implementation, combining
as it does a range of different estimation procedures, and somead hoc assumptions concerning
the parametric forms of the key normalising constants. Herewe briefly consider another ap-
proach, suggested by (Bortotet al., 2000), and currently the subject of ongoing work by Atyeo
and Walshaw.

4.5.4 The multivariate Gaussian tail model

The multivariate Gaussian tail model for the multivariate distribution functionF is defined on
the joint tail region (Bortot et al., 2000):

R(u) = (u1,∞) × . . .× (up,∞)

whereu = (u1, . . . , up). (e.g. Region 1 in Figure 15). For each observation in the joint
tail regionR(u) we transform each marginal observation to have a standard Normal marginal
distribution, and then apply thep–dimensional standard Normal distribution function. We then
transformback to extreme value margins. This provides a more realistic representation of the
dependence, while retaining the asymptotic arguments for the marginal extremes.

We have been able to fit such models to the8-dimensional rainfall problem associated with
Figure 14, however inference for this problem was much simplified by adopting a Bayesian
approach.
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