4 Multivariate extremes

4.1 Introduction

In this section we consider the problems we face if we wish talehthe extremal behaviour
of two or more (dependent) processes simultaneously. Tdrerseeveral reasons why we may
wish to do this:

e to model the extreme behaviour of a particular variable segeral nearby locations (e.g.
rainfall over a network of sites);

e to model the joint extremes of two or more different varigldéa particular location (e.g.
wind and rain at a site);

e to model the joint behaviour of extremes which occur as coutsee observations in a
time—series (e.g. consecutive hourly maximum wind gustsdua storm).

All of these problems suggest fitting an appropriate lingtmultivariate distribution to the
relevant data. However, as we shall see, the derivation @i aumultivariate distribution is
not as easy as we might hope. The analogy with the Normallaisitvn as a model for means
breaks down as we move intodimensions! It is not even clear what the ‘relevant dataustho
be! Most of the increased complexity is apparent in the moemfl to 2 dimensions, so we
will focus largely on bivariate problems.

4.2 Componentwise maxima models
4.2.1 Example: network of rainfall measurements

Suppose we want to study the joint extremes of daily rairfedumulations at the network of 8
sites shown in Figure 14.
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Figure 14: Eight rainfall recording stations in southerottmnd

Such issues are of great interest, especially currengjygéven the severe flooding experienced
in the UK recently. Suppose we have sequences of daily tataflall at each location. There
is liable to be strong inter—site dependence in extrema$esense that days with heavy rain
are liable to occur simultaneously across locations. Themaltivariate observations afe-
dimensional vectors of the daily rainfall over the eighésit
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Now suppose we wish to take a block—maxima approach, witickd’ being years. For any
given year, the 8—dimensional vector of annual maxima igalyl to be one of the raw mul-
tivariate observations. Let's simplify to the bivariatesea Let( X1, Y1), (X5, Y3), ... be i.i.d.
vectors with distribution functiod’(x, y). Now consider the componentwise block maxima

M., = max {X;} and M, , = max {Y;}.

e ey

We define thevector of componentwise maxima to be
1\/In = (Mm,m My,n)-

M,, is not necessarily one of the original observatiois, Y;). Nevertheless, we are interested
in the limiting behaviour ofM,, asn — oo. The first point to note is that standard univariate
extreme value results apply in each margin. When consigé¢hi@ dependence, this allows us
to make a simplifying assumption.

We assume that th&; andY; variables have a known marginal distribution. It is coneenito
assume this is the GEV(0,1,1) distribution, also known asuthit Fréchet distribution, which
has c.d.f.

F(z) =exp(—1/2), z > 0.

This gives rise to a very simple normalization of maxima:
Pr(X; < z) =Pr(M,,/n < z) =exp(—1/x), x>0,

(and similarly forY;). So if we consider the re—scaled vector

M, = (g, 06/, (1),

..... n )

the margins are unit Fréchet for alland hence we can characterize the limiting joint behaviour
of M} without having to worry about the margins. Unfortunatelylinating parametric family
exists! (for bivariate extremes, or multivariate extrermegeneral).

4.2.2 Theorem: limiting distributions for bivariate extre mes

Let M;, = (M;,,, M) be the normalized maxima as above, where(tkig Y;) are i.i.d. with

z,n?

standard Fréchet marginal distributions. Then if

Pr(M; ., My,) — G(z,y),

z,m)

whereG is non—degenerate, théhhas the form

G(z,y) =exp{-V(z,y)}; x>0, y>0 (13)
where: . X
Vi(x,y) = 2/0 max (;, T) dH (w) (14)

andH is a distribution function o0, 1] satisfying the mean constraint:
1
/ w dH (w) = 0.5. (15)
0
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Hence the class of bivariate extreme value distributions @ne-to-one correspondence with
distribution functionsH satisfying the constraint (15). I/ is differentiable with density:,

then (14) becomes
1 1 _
V(z,y) = 2/ max <f’ —w) h(w)dw.
0 x Yy

However some simple models arise whigns not differentiable. E.g. if{ places mas8.5 on
each ofw = 0 andw = 1, then we get

Gz,y) =exp{—(z"+y™ "}, 2>0,y>0,

corresponding to independenandy.

Since the GEV provides the complete class of marginal linsitrdbutions, then the complete
class of bivariate extreme value distributions is obtaiaeébllows. If we suppos& andY” are
GEV with parameter$y,, 0., ;) and(u,, oy, ,) respectively, then the transformations

1/&x 1/&y
e ()] e e (152
T Y

obtain unit Fréchet margins. Hence

G('Tv y) = exp{—V(f, g>}

is a bivariate extreme value distribution with the appraf@imargins for valid’(.), and pro-
vided([1 + &, (z — py) /0] > 0] and[1 + &, (z — py)/0,] > 0.

4.2.3 Modelling bivariate extremes in practice

In practice, modelling usually involves identifying a pareiric sub—family with appropriate
flexibility to handle the structure inherent in the data. Misdcan be fitted, e.g. by maximum-—
likelihood estimation, either in two steps (marginal comeunts followed by dependence func-
tion), or in a single sweep. All of these procedures, inalgdhe choice of models, are handled
in a very similar way when dealing with threshold exceedan¥®ge consider the details in the
next section.

4.3 Threshold excess models

We want to define our bivariate extremes in those obsenatidrich exceed a threshold in one
or other margin. For our bivariate observatioX, V), let's focus onX. We have already seen
that the distribution function for the exceedances of asthoéd« by a variableX, conditional
on X > u for large enoughu, is given by:

£(@—u) }—1/5

g

G(x):1—>\{1+

defined on{z —u:zxz—u>0and (1 +&(z —u) /o) > 0}, where # 0,0 > 0, and)\ =
Pr (X > u). Now we can obtain a unit Fréchet margin with the transforomat
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If we apply the analogous transformation to in tienargin, we obtain

F(z,9) =exp{-V(Z,9)}; x>us y>uy,

V(2,y) = 2/01 max (fl_—”) dH ()

r oy
andH is a distribution function o0, 1] satisfying the mean constraint:

/OlwdH(w) = 0.5.

where:

4.3.1 Example: wave—surge data

Here we choose a different type of example of dependencestmthfall problem considered

in Section 4.2. Here we consider two variables recordedumently at the same site. A series
of 3-hourly measurements on sea—surge were obtained framyNesouthwest England. For

suitably high thresholds, we can identify which observadiare extreme.

4.3.2 Threshold representation

Bivariate threshold models are complicated by the postiltiiat a bivariate paitz, y) may be
an ‘exceedance’ and yet exceed the specified threshold yromel of the two components.

Wave-Surge Data (1971-1977, Newlyn, Cornwall)
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Figure 15: Threshold classification of bivariate data

4.3.3 Modelling the dependence structure

The class of bivariate extreme value models contains manifiés of distributions which can
be used to model the dependence structure in the data. Tkeedkspce structure must satisfy
the conditions orf{ (w). Possible choices are:

Logistic Model — symmetric
Negative Logistic Model
Bilogistic Model — asymmetric
Dirichlet Model

Here we will focus on the logistic model and the bilogisticaebas two commonly used but
contrasting choices.
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4.3.4 The Logistic model
G (x,y) = exp {— (x_l/a + y_l/a)a}
wherez > 0,y > 0 anda € (0, 1).
e o — 1 corresponds to independent variables.
e a — ( corresponds to perfectly dependent variables.

e This model is symmetric — the variables are exchangeable.

4.3.5 The Bilogistic model
G (z,y) = exp {ml‘a +y(l- 7)1_5}
where0 < a < 1,0 < § < 1 andy = v (z, y; , ) is the solution of:
(1-—a)z(l-"=(1-8)y"

¢ Independence is obtained when= 5 — 1 and when one o or 3 is fixed and the other
approaches 1.

e Whena = ( the model reduces to the logistic model.

e The value ofr — 3 determines the extent of asymmetry in the dependence steuct

4.3.6 Likelihood calculations

e For points in Region 1, the bivariate model structure shoppiies, and the density of
F (z,9) gives the appropriate likelihood component.

¢ In other regions, the likelihood component for the pointshhe censored.

4.3.7 The likelihood function

The likelihood function can be written as:
L(0;(x1,51), - (@ yn)) = [ [ ¥ (05 (i, )

whered gives the parameters éf and

(

% o) if (z,y) € Region 1
¥ (0; (z,y)) = g_g‘(xvuw if (z,y) € Region 2
| () if (z,y) € Region 3
F (ug,u,)  if (z,y) € Region 4

The various models can be fitted to data by maximum likelihestimation using routines
available in theR packagesvd. We will explore this in the secorid practical.
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4.4 Point process representation

It helps our understanding of bivariate (and hence mulate) extremes to think in terms of a
point process model as follows. Let;, y1), (x2,12), . . . be a sequence of independent bivariate
observations form a distribution with standard Fréchetgimarsuch that

Pr{M;, <z, My, <y} — G(z,y).
Let V,, be a sequence of point processes defined by

N, = {(n‘lxl, n_lyl), o (n_lxn, n_lyn)}.
Then
N, - N

on regions bounded away fro(®,0), where N is a non—homogeneous Poisson process on
(0,00) x (0,00). Moreover, if we change our coordinates to an angular-tégiien (‘pseudo-
polar’) by setting

X
r=x and w= ,
r+y
then the intensity function oV is
dH (w)
Ar,w) =2 SR

where H is related toG in the usual way (Equations (13) — (15)). This is helpful hesz
andw are measures of distance (from the origin) and angle (fran:-thxis) respectively, and
the dependence functiaii determines the angular spread of points\gfand is independent
of radial distance. If H is differentiable, then since measures the relative size:ofo y in the
pair (z,y), thenh(.) determines the density of events of different relative.slzes fairly easy
now to picture what different densitiés.) will look like it terms of the scatter of points in the
limiting point processV.

4.4.1 The point process representation in practice

We assume the Poisson limit to be a reasonable approxintatidp on an appropriate region.
Convergence is guaranteed on any region bounded from thmoand things are especially
simple if we choose a region of froth = {(z,y) : /n+y/n > ry} for suitably larger,, since

then .
A(A):z/—de _2/ dr/ dH (W) = 2/ro,
AT r w=0

which is constant with respect to the parameterﬂoif we assumed has density:, then the
likelihood is given by

Na

L(O; (z1,01), - - (s yn) = exp{AA)} [ [ Ma/n. va /n)

=1
Na
o ] hw),
i=1
wherew; = z(;)/(x@) + y@)) for the Ny points(z;), y)) which are inA. [This is based on

assuming that we have already transformed the margins s(ith®, ), . . ., (z,., y,) have stan-
dard Fréchet distributions.] Now we can fit the model usingimam-—likelihood estimation.
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4.4.2 Point process model for wave—surge data

A point process model was fitted to the wave—surge data aftasformation to unit Fréchet

margins, and using a threshold of the fotkh+ Y = ry, wherer, was chosen so that the

marginal thresholds are both at the 95th percentile. Eittie two dependence models (logistic
and bilogistic) to the wave—surge data we obtain the folhguesults:

Model log-lik. Q@ I}
Logistic  227.2 0.659 (0.013)
Bilogistic 230.2 0.704 (0.024) 0.603 (0.032)

These results suggest a fairly weak, while clearly signiticdependence. The logistic and
bilogistic models can be compared using a likelihood rag&t,tand significant asymmetry is
suggested. It is also possible to produce graphs of the fitteflfunctions, with the histograms
of the empiricalv values super—imposed. Here we just show some dependercieofisfor
the logistic model.

alpha=0.2 alpha=0.4

2.0

15

hw)
1.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

alpha=0.6 alpha=0.8

35
]

h(w)
h(w)

15

09 10 1.1 12 1.3 14 15 1.6

05
]

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 16: Some dependence functions for the logisitc model

4.5 Asymptotic dependence and independence

One key problem with using limit distributions for multivate extremes is that they force one
of two possibilities:

1. extremes occur independently in the different margins;

2. extremes occur with a dependence structure which cosftonan asymptotic extreme
value distribution.
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In practice this imposition is not helpful ...it is often tbase that asymptotic independence
is suggested by the data, and yet quite strong dependencesenp, even at high levels. Data
that seem to be dependent at ordinary levels may not nedgdsadependent in the limiting
distribution. Consider the regiaft = {2 > u, X > v}. Then:

{ ( X y) } C/n, Asymptotic Dependence
Pr A
C'/n?, Exact Independence

where(C' is a constant term that does not dependion

4.5.1 The coefficient of tail dependence
Consider the variable:

T=min(X,Y).
The distribution function of " is given by:

K

t > u,

whereu is a threshold above which the data are regarded as extrai€ &ra (almost) constant
term with respect t@. d gives a measure of extremal dependence betwéemdY and is
known as the Coefficient of tail dependencé

45.2 Inference ford

The likelihood function for7 is:

. K \"™ (K\™ 17,-a+18)

1=1

wheren,, is the number of observations that satigfy> ». Maximum likelihood estimation
gives the estimate:

N e t;
o=—>»Y 1 -
> (%)
evaluated for the,, points in the data set aboue § describes the limiting dependence structure:

6 = 1 implies asymptotic dependence.
% < 8 < 1implies positive association.
§ =  implies near independence.

0<d< % implies negative association.
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4.5.3 Wave—surge data

Plots of against increasing give an indication of the level of dependence present betwee
two processes in the limiting distribution.
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Figure 17: Wave-Surge data with 95% quantil®splot with 95% confidence bounds.

d = 1 is within the 95% confidence bounds for allas« increases, suggesting that wave—
height and surge am@symptotically independent

Research into modelling data in such instances, i.e. wihere is still dependence within the
‘extremes’ in the data set, but yet asymptotic independessgggested, is all fairly recent. The
most prominent work is the article by Heffernan and Tawn @mM$2004). Here they develop
semiparametric models based on assuming observationstegme in at least one component,
and then conditioning on this. This approach can be quitesyniesmplementation, combining
as it does a range of different estimation procedures, am@ ad hoc assumptions concerning
the parametric forms of the key normalising constants. hexeriefly consider another ap-
proach, suggested by (Bortgital., 2000), and currently the subject of ongoing work by Atyeo
and Walshaw.

45.4 The multivariate Gaussian tail model

The multivariate Gaussian tail model for the multivariaigtbution functionf is defined on
thejoint tail region (Bortotet al., 2000):

R(u) = (u1,00) X ... % (up, 00)

whereu = (us,...,u,). (e.g. Region 1 in Figure 15). For each observation in thetjoi
tail region R(u) we transform each marginal observation to have a standanth&anarginal
distribution, and then apply the-dimensional standard Normal distribution function. Werth
transformback to extreme value margins. This provides a more realisticesgmtation of the
dependence, while retaining the asymptotic argumenth®ntarginal extremes.

We have been able to fit such models to #idimensional rainfall problem associated with

Figure 14, however inference for this problem was much siredl by adopting a Bayesian
approach.
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