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1 Classical models and threshold models

1.1 Introduction

Statistical modelling of extreme weather has a very pratiiotivation: reliability — anything
we build needs to have a good chance of surviving the weathagronment for the whole of
its working life. This has obvious implications for civil gmeers and planners. They need to
know:

e how strong to make buildings;

e how high to build sea walls;

e how tall to build reservoir dams;
e how much fuel to stockpile;

etc.

This motivates the need to estimate what the:
e strongest wind;
¢ highest tide;
e heaviest rainfall;
e most severe cold-spell;

etc. will be over some fixed period of future time. The onlysble way to do this is to use
data on the variable of interest (wind, rain etc.) and fit aprapriate statistical model. The
models themselves are motivated by asymptotic theory,td@adstour starting point.

1.2 Classical models

Extreme value modelling has a central theoretical resol)agous to the Central Limit The-
orem. Suppos«, X,,..., is an independent and identically distributed sequencarmdaom
variables. Define

M, = max{Xy,..., X,}.

We are interested in the limiting distribution éf,, asn — oco. As with the mean X, of
{X1,...,X,}, the limiting distribution ofM,, asn — o is degenerateand we need to work
with a normalised version.

1.2.1 The Extremal Types Theorem (Fisher and Tippett, 1928)

If there exist sequences of constafis > 0} and{b, } such that

Pr{(M, —b,)/a, <z} — G(z) as n — oo,



where G is a non—degenerate distribution function, th@melongs to one of the following

families:
o) = ewf-ew[- ()]} —ecien
11:6(z) = eXp{—<Z;ﬁ)a}, 2> B [G(z) = 0,2 < d);
11:G(s) — exp{—[—(zjyﬁ)a]}, s< B (G5 =123 A,

for parameters > 0, 3, anda > 0.

1.2.2 The Generalised Extreme Value Distribution (GEV)

Families I, Il and 11l are widely referred to as Gumbel, Frechnd Weibull (or Extreme Value
Types |, Il and Ill) respectively.

Fortunately they can be combined into a single family, knawithe Generalised Extreme Value
Distribution (GEV), with c.d.f.

G(z) = exp {— {1 te (%)} _1/5} : @)

defined on the sdftz : 1 + &(z — u)/o > 0}, and wherg:, o > 0 and¢ arelocation, scaleand
shapeparameters respectively.

Note that the Extreme Value Types I, Il and 1l correspondi®dases = 0, & > 0and¢ < 0
respectively.

For Type |, we need to take the limiting form of Equation (1xas 0, which gives
o =en{-oo - (59)]). @
g

So the Extremal Types Theorem can be restated with (1) asniienty form, and this provides
the basis for our first modelling approach.

defined for allz.

Approach 1: “Block maxima”

Break up our sequenck;, X, ... into blocks of sizen (with n reasonably large), and extract
only the maximum observation from each block.

Now fit Model (1) to the sequence of extracted maxiii@,, M), . . ., My and use this as the
basis for statistical inference. The most common impleatent of this approach for weather
data is to take our block size to be one year. This rough ardyra@aproach has shown itself to
be surprisingly robust!



1.2.3 Example: Annual maximum rainfall

Consider the annual maxima of daily rainfall accumulatipms) at a location in SW England,
from 1914 to 1961.
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Figure 1. Annual maxima of daily rainfall totals at a locatio South West England

1.2.4 Inferences for the block maxima approach

Here our blocks have = 365, which is reasonably large, so we fit Model (1) to tNe= 48
annual maxima (e.g. usimgaximum likelihood estimatipnWe obtain fitted parameter values
(standard errors in parentheses):

p=407(15)  0=94(12)  £=0.14(0.12).

More importantly, we can make inferences on the quantitiestraseful to practitioners ....
For example, the 99th percentile in the distribution of almiaxima is known as th€00 year
return level The fitted value of this is easily obtained on inversion ofddi(1):

1.2.5 Remarks about the block maxima approach

e We don’t need to deal explicitly with normalisation congganWe don'’t even need to
know n!

e The assumption of independent and identically distributed variables in ealcick is
cavalier, but inferences are surprisingly robust.

e The inferences on return levels are crucial for designedsesigineers, to the extent they
are built into legally binding codes of practice.



¢ In actual fact, the existing codes of practice are usualbetdan a very primitive version
of the methods just described. Fits are often based ona®sgyito one of the Fisher—
Tippett types, ignoring estimation uncertainty, and usingd hocinterpolation of return
levels across a network of sites.

¢ In any case the block—maxima approach is oftery wasteful of data, leading to large
uncertainties on return level estimates. This motivatafferent approach ... ...

1.2.6 Diagnostics for the block maxima approach

The goodness—of—fit of the GEV model is most easily assessiag various diagnostic plots.
Here we consider four plots:

1. Probability plot: the fitted value of the c.d.f. is plotted against the empinetue of the
c.d.f. for each data point.

2. Quantile plot: the empirical quantile is plotted against the fitted quarfolr each data
point.

3. Return level plot: the return level (with error bars) is plotted against themefperiod.
Each data point defines a sample point.

4. Density plot: the fitted p.d.f. is superimposed on a histogram of the data.

For our rainfall example, the diagnostic plots look likesthi.
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Figure 2: Diagnostic plots for GEV fit to rainfall annual mapa



1.2.7 Confidence intervals for return levels

Although we could construct a symmetrical confidence irgkior ther—year return—level us-
ing classical likelihood theorygf + 1.96 x standard error), this is not recommended. This
practice assumes the limiting quadratic behaviour of tkedihood surface near the maximum,
whereas in fact the surface is usually very asymmetrical.

We recommend using the methodaobfile likelihoodto take this into account: by reparameter-
isation of Equation (1) to replace one of the parameterg.pbwe can maximise the likelihood
conditionalon ¢, taking each possible value. We plot this constrained vajjaenaty,. . . .

1.2.8 Profile likelihood confidence interval forg; oo

For the rainfall example we get:
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Figure 3: Profile log-likelihood for 100 year return level

The likelihood—ratio test can be applied directly to thielihood surface by using a cut—off
equal to0.5 x x3(.). Here we see that tH% confidence interval is approximately (78,176).

1.3 Threshold methods

Threshold methods use a more natural way of determininghen@in observation is extreme -
all values greater than some high valtler¢shold are considered. This allows more efficient
use of data, but brings its own problems. We must first go backcansider the asymptotic

theory appropriate for this new situation.

1.3.1 The Generalised Pareto Distribution (GPD)

The appropriate limit theorem can be stated as follows:
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Under very broad conditions, if it exists, any limiting dibution asu — oo of (X —u|X > u)
is of Generalised Pareto Distribution (GPD) form (setting= X — u):

—-1/¢
H(y) = 1_<1+§_y) , (3)

7/

wherea, = max0,a) ando (o > 0) and¢ (—oo < £ < oo) are scale and shape parameters
respectively. Once again the GPD exists o+ 0, and is given by taking the limit of (3) as
¢ — 0. This time we get

H) = 1-ow (). @)
defined fory > 0. This shows that whefi = 0, the GPD is in fact the Exponential Distribution
with mean equal to the scale parameidr > 0).

1.3.2 Return levels for the threshold excesses approach

If the GPD is a suitable model for exceedances of a threshblga random variabl&, then
for z > u,

Pr{X > 2]X > u} = {1+§ <x;u)r/é.

It follows that

NV
Pr{X>x}:)\u{1+§(xa )} . (5)

where), = Pr{X > u}. So the levek,, that is exceeded once every observations is the

solution of e
- B 1
ag m

Rearranging this we obtain
Ty = U+ %[(m)\u)5 —1],

so long asn is large enough to ensure thaf, > u. Now if there aren,, observations per year,
then by settingn = N x n,, the N-year return level is obtained as

ZN = p+ %[(Nny)‘u)5 —1] (6)

or when¢ = 0,
v = u+ olog(NnyA,),

and standard errors can be obtained using the delta method.

Approach 2: “Exceedances over thresholds”

In practice, modelling might typically proceed as follows:

1. Choose some threshalg which is high enough so that the GPD (3) is a good model for
(X — Uo‘X > Uo).

2. Fitthe GPD to the observed excesses u.

3. Use the fitted GPD, together with some model for the ratexoéedancesX > wu, to
provide estimates faeturn levelsusing (6).



1.3.3 Example: daily rainfall totals

For the rainfall data we used before, now consider the daibl¢ themselves.

Daily Rainfall at a location in SW England (1914—1961)
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Figure 4: Daily Rainfall (1914-1961)

1.3.4 Threshold choice: Mean residual life plot

We make use of the fact that if the GPD is the correct model lfdha exceedances; above
some high threshold,, then themean excess.e. the mean value df:; — u), plotted against
u > ug, should give a linear plot (Davison and Smith, 1990) [BeealiEX; — w,] is a linear
function ofu : u > ug]. By producing such a plot for values afstarting at zero, we can select
reasonable candidate values f@r

Mean Excess

0 20 4‘0u 60 80

Figure 5: Mean residual life plot for daily rainfall



1.3.5 Inferences for the rainfall threshold excesses

Model (3) turns out to work reasonably well for all the ex@=sabove:, = 30mm This gives
152 exceedances;;i = 1,...,152, and Model (3) is fitted to the valués; — ), again using
maximum likelihood. We get

o =744(0.96) & =0.18(0.10).

Assuming a uniform rate of exceedances, we estimate theyg@@return levely,oo = 106.3(20.8).

1.3.6 Diagnostics for the rainfall threshold excesses
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Figure 6: Diagnostic plots for the the threshold exceedamaeéel for rainfall

1.3.7 Profile likelihood confidence interval forg;qq

From the graph below, th&% confidence interval is approximately (81,184).
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Figure 7: Profile log—likelihood fog; o based on threshold excess model



1.3.8 Threshold choice revisited

If the GPD with shape parametérand scale parametet,, is the correct model for excesses
overuyg, then for any threshold > u, the excesses will be GPD with shape paramgtend
scale parameter

Oy = Oyy + g(u - uO)'

If we now use a modified version of the scale parameter,
o =0, —&u,

we can see that both* and¢ should be constant over thresholds greater thaih we model
excesses; — u for u > wug using the GPD. This provides us with a further tool for assess
our original choice of threshold,.

1.3.9 Parameter stability plots

We refit the GPD for a range of thresholds upwards@fand investigate the stability of our
estimates of andc*. 95% confidence intervals are shown by vertical lines, and helpssgss
the significance of any variation we see.
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Figure 8. Parameter stability plots for the threshold mdadetainfall

We can be reassured about our original choice,of 30!
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2 Dependence and non-stationarity

The asymptotic results introduced in Part 1 have assumadhitherlying process to be indepen-
dent and identically distributed (i.i.d.). They also assuims process is stationary. In practice,
extreme value data — particularly environmental time serd@xhibit some form of departure
from this ideal. The most common forms are:

— Local temporal dependence, where successive values tiftbseries are dependent, but
values farther apart are independent (to a good approxamati

— Long term trends, where the underlying distribution chesgradually over time;
— Seasonal variation, where the underlying distributioandes periodically through time.

These departures can be handled through a combinationeridirg both the theory and the
modelling. However, although a wide range of theoreticatlele for non—stationarity have
been studied, only in a few cases have these been used fististhtmodelling; the results
have generally been too specific to be of use in modelling fitatavhich the form of non—
stationarity is unknown. Over the last decade or so, it has Ibeore usual for practitioners to
employ statistical procedures which allow the existingitssto be applied. In Part 2, we will
consider some of these in detail.

2.1 Extremes of dependent sequences

For the types of data to which extreme value models are corlynapplied, temporal indepen-
dence is usually an unrealistic assumption. In particetereme conditions often persist over
several consecutive observations, bringing into questierappropriateness of models such as
the GEV. A detailed investigation of this requires mathaoahtreatment at a level of sophis-
tication beyond which we have time to capitulate in this slourse; however, the general
ideas are not difficult and the main result offers a simplagcfcal, interpretation. For the re-
mainder of this section on dependent sequences, we shathagbat our process sationary
corresponding to a series whose variables may be mutugtigraent, but whose stochastic
properties are homogeneous throughout time.

Dependence in stationary sequences can take many differem. With practical applications

in mind, it is common to assume a condition that limits theeaktof dependence to short—
range temporal dependence so that, for example, ewgraad.X;, both of which are extreme,
are independent provided time poiritand j are far enough apart. Indeed, many stationary
sequences satisfy this property. By excluding the podésilaf long—range dependence in this
way, we focus our attention on dependence at a much shonige r&ffects of such short-range
dependence, it turns out, can be quantified within the staneldreme value limits discussed
in Part 1.

2.1.1 Maxima of stationary sequences

The book by Leadbettet al. (1983) considers, in great detail, properties of extrenfieepen-
dent processes. A key result often used is ‘Leadbetfe(is,) condition’, which ensures that
long—range dependence is sufficiently weak so as not totaffecasymptotics of an extreme
value analysis. This condition is stated more formally ia Befinition below.
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Definition (Leadbetter’s D(u,,) condition)
A stationary series(;, X», ... is said to satisfy thé(u,,) condition if, for alli; < ... < i, <
1< ..o < JgWith jy — iy, > 1,

’Pr{Xle Sty Xi) St Xy Sty X, S )
—PI‘{XZ»1 < Uy, X, < un} Pr{le < Up, ..o, X, < un} ‘ < a(n,l), (7)

wherea(n, ) — 0 for some sequendg such that,,/n — 0 asn — oc.

For sequences of independent variables, the differenceolmapilities in the above expression
is exactly zero foany sequence,,. More generally, we will require that thB(u,,) condition
holds only for a specific sequence of threshalgthat increases with. For such a sequence,
the D(u,,) condition ensures that, for sets of variables that are faugh apart, the difference
in probabilities expressed in (7), while not zero, is sudintly close to zero to have no effect on
the limit laws for extremes.

Theorem

Let X;, X5, ... be a stationary series satisfying Leadbettéa.,) condition, and letV, =
max{ X1, ..., X,}. Now letX;, X,, ... be anindependenseries withX having the same dis-
tribution asX, and letM,, = max{ Xy, ..., X, }. Then if M,, has a non—degenerate limit law
given by PH{(M,, — b,)/a, < x} — G(z), it follows that

Pri (WL, — by)fa, < w} — G¥(x) ®)

for some) < 0 < 1.

The parametef is known as thextremal indexand quantifies the extent of extremal de-
pendence: = 1 for a completely independent process, @d- 0 with increasing levels

of (extremal) dependence. SinGen the above theorem is necessarily an extreme value distri-
bution, and due to thenax—stabilityproperty (see Leadbettet al., 1983), then the distribution

of maxima in processes displaying short-range temporargnce (characterised by the ex-
tremal indexd) is also a GEV distribution; the powering of the limit diswition by # only
affects the location and scale parameters of this distabut

The above theorem implies that if maxima of a stationaryesazonverge — which, from Part 1,
we know they will do — then, provided an appropri&éu,,) condition is satisfied, the limit dis-
tribution is related to the limit distribution of an indeplamt series. The effect of dependence,
as seen in expression (8), is just a replacement a$ the limit distribution withG?. In fact, if

G corresponds to the GEV distribution with parametgrss, €), then

() = eXp{_ [1+g(zgu)r/f}9
)

wherep* =y — ¢ (1—67%) ando* = o6. Thus, if the (approximate) distribution af,, is
GEV with parameter$u, o, ¢), then the (approximate) distribution 1, is GEV with param-
eters(u*, 0%, €).

12



2.1.2 Modelling block maxima

Provided long—-range dependence is weak, we can proceeddel ilock maxima from series
with short—range extremal dependence as outlined in Painte the distribution of block
maxima falls within the same family of distributions as wable appropriate if the series were
truly independent. This is fantastic news! Short-rangepta dependence is a much more
plausible assumption than complete independence, and odellimg approach is still valid!
However, the main difference — excluding the change in patara from(u, o, &) to (u*, o, §)
—is that our impliech (the number we are taking the maxima over) is now effectivetiuced
due to the dependence, so convergence of maxima to the istribdtion will be slower. And
shouldn’t we be using threshold methods anyway, which ulserration onall extremes and
not just those that are the maximum within their block?

2.1.3 Modelling threshold exceedances

Though the modelling procedure for fitting the GEV to a setrofiaal maxima is unchanged for
series which display short—term temporal dependence, sevigon is needed of the threshold
exceedance approach. If all threshold exceedances aréenusedanalysis, and the GPD fitted
to the set of threshold excesses, the likelihoods we usebeilincorrect since they assume
independence of sample observations. In practice, setsmtaiques have been developed to
circumvent this problem, including:

1. filtering out an (approximately) independent set of thrédleaceedances

2. fitting the GPD taall exceedances, ignoring dependence, but then appropraatieisting
the inference to take into account the reduction in inforamat

3. Explicitly modelling the temporal dependence in the praces

Though the first approach above is by far the most widely—usedresearch has focussed on
the relative merits of the other two approaches. The thimt@ch makes use of multivariate
extreme value theory, and so we shall re—visit this idea imenatetail in Parts 4 and 5 this
afternoon. For now, let us consider the first two approachdsch we will call removing
dependence angnoring dependence, respectively.

2.1.4 Example: Cluster peaks or all excesses?

Figure 9 shows a series of 3—hourly measurements of sea&-karghts at Newlyn, a coastal
town in the southwest of England, collected over a three geeod. The sea—surge is the me-
teorologically induced non-tidal component of the stilater level of the sea. The practical
motivation for the study of such data is that structuralfia@l— probably a sea—wall in this case
— is likely under the condition of extreme surges. Also shawRigure 9 is a plot of the time
series against the lag 1 time series.

A natural way of modelling extremes such time series is tothseGeneralised Pareto Dis-
tribution (GPD) as a model for excesses over a high threshétlalready discussed in Part
1, this approach might be preferable to the block maximacaagr which is highly wasteful
of data (and precious extremes!). Figure 9 also shows treepce of substantial temporal de-
pendence in the sequence of three—hourly surges. We willaomsider approachelsand 2,
outlined above, to circumvent this problem.
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Figure 9: Newlyn sea—surge data: (a) Time series plot; &pgram; (c) plot of the time series
against the series at lag 1.

‘Removing’ dependence

The most commonly adopted approach to circumvent the pmablsaused by such temporal
dependence is to employ a declustering scheme to filter cttaf approximately independent
threshold excesses. One method, which is often considerked the most ‘natural’ way of
identifying ‘clusters’ of extremes, is ‘runs—declusteyinThis is how it works:

1. Choose an auxiliary ‘declustering parameter’ (which we gal

2. A cluster of threshold excesses is then deemed to have tatedims soon as at least
consecutive observations fall below the threshold

3. Go through the entire series identifying clusters in thiy wa

4. The maximum (or ‘peak’) observation from each cluster isithgtracted, and the GPD
fitted to the set of cluster peak excesses.
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This approach is often referred to as theaks over thresholdpproach (POT, Davison and
Smith, 1990) and is widely accepted as the main pragmatimapp for dealing with clustered
extremes. Although this approach is quite easy to implentbate are issues surrounding the
choice ofx; if

e x is too small, the cluster peaks will not be far enough apasafely assume indepen-
dence

e ristoo large, there will be too few cluster exceedances orchvta form our inference

It has also been shown that parameter estimates can beisetsithe choice ok. In this
example, we use a separation interval of 60 hours (and s020) following the example of
Coles and Tawn (1991), which should be large enough to sagslyme independence between
successively identified clusters allowing for wave propiagetime. We used a mean residual
life plot (see Part 1) to identify a suitably high threshdd3m).

The table below shows maximum likelihood estimates of th&®GPale and shape parame-
terso and¢, along with the associated 95% confidence intervals, fitiede set of cluster peak
excesses using= 20. Shown for comparison are the corresponding estimateg alithresh-
old exceedances, ignoring temporal dependence. Notedheegancy in the estimation of the
two parameters under the two approaches; however, wheriagdor sampling variability,
these differences are not significant.

g
€
Cluster peaks 0.187 -0.259
95% confidence interval (0.109, 0.265) (—0.545, 0.027)
All excesses 0.104 —-0.090
95% confidence interval (0.084, 0.125) (-0.215, 0.035%)

Table 1: Maximum likelihood estimates, and associated 98/tidence intervals, for the GPD
scale and shape parameters

‘Ilgnoring’ dependence

Table 1 above shows that, although there is a slight disogpia parameter estimation when
using (i) cluster peak exceedances andifliexceedances, these discrepancies are non-significant.
Therefore, why bother declustering? Surely we're betteusihgall excesses?

The confidence intervals for the estimates using all exesease too narrow — fitting to all
exceedances when there is clearly evidence of short—tenpaal dependence will result in
underestimated standard errors. Smith (1991) suggestadure in which the usual asymp-
totic likelihood calculations are supplemented by emplrieformation on dependence, in order
to produce a modified covariance matrix for the parametengtwis approximately correct af-
ter the dependence has been taken into account.

Under the model fitting procedure which assumes indepemrgdeatenote the observed infor-
mation matrix byH. If independence were a valid assumption, then the covaeiamatrix of
the maximum likelihood estimates (m.l.e.s) would be apjmnaxely 7 —!. Smith (1991) shows
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that to account for dependence this approximation shouleplaced by 'V H~!, whereV

is the covariance matrix of the likelihood gradient vecteurthermore)” can be estimated by
decomposing the log—likelihood sum into its contributidmysyear (which should be indepen-
dent up to a good approximation) and obtaining the apprtgpdavariance matrix empirically.

Similar arguments can be applied to modify the procedur¢efsting hypotheses. Specifically,
denoting model parameters y= (p, () wherep and¢ are of dimensiong andgq respectively,
suppose that a test éf, : p = py againstH; : p # po is required( being a nuisance parameter.
Assuming independence, test procedures are usually basee asymptotic distribution of

2{0(dh) — £(do)}, )

which is x?. Here,((1),) and{(¢,) denote the log—likelihood evaluated at the maximum like-
lihood estimate undek, and H; (respectively). Now suppose we wish to account for depen-

dence. Partitioning
Hll H12
H = ,
( Hy Ha )

whereH, H,2, Hy; and H,, are the appropriate sub—matrices of dimenspor®, p x ¢, ¢ X p
andq x ¢ respectively, then we partition the inversefdfas

B Hll H12
H' = ( H2! 22 )>
where each sub—matri{ - has the same dimensions&ds. Now let

o - (Hll H12 )
H21 H22 _ H2_21 .

Then Smith (1991) shows that the approximate distributfaexpression (9) is given by

p

> N (10)

where thez;, i = 1, ..., p, are standard normal variates and Mp@re the non-zero eigenvalues
of VI/2C'V/2. This replaces the usugf—distribution, which is valid in the case of indepen-
dence, and which would be recovered if all thevere set equal to 1. It is then easy to simulate
from the modified distribution (10) to estimate any requigentile of the test statistic. Profile
likelihood confidence intervals then arise as the set ofegbfi); such that the test statistic (9)
is smaller than the quantile which represents the desixed ¢¢ significance.

Table 2 reports maximum likelihood estimates for the GPDesaad shape parameters, along
with their 95% confidence intervals, for analyses usatigexcessesand justcluster peak ex-
cessegas before); in the analysis using information on all exesnthough, standard errors
have now been inflated to account for temporal dependencemitn’s method (1991).

Table 3 shows maximum likelihood estimates for return let@l four return periods — = 10,
50, 200 and1000 years. The corresponding 95% confidence intervals havedi#amed using
the method of profile likelihood, where the appropriate offtfor the test statistic (9) has been
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obtained using the modified distribution (10). In this wag profile likelihood confidence in-
tervals have been inflated to account for the dependence ayawhich is consistent with the
modifications proposed by Smith (1991). Figure 10 shows agdlthe profile likelihood for
one of these return levels =5, — illustrating the severe asymmetry which is commonly ob-
served for return levels. This plot is for the analysis uafighreshold exceedances. The 95%
profile likelihood confidence interval fak, after adjusting for dependence, is identified on the
plot. Also shown is the much narrower interval which wouldéaeen obtained if dependence
had been ignored.

Table 2 shows that, when the analysis is restricted to a selusfer peak exceedances, the
GPD scale parameteris overestimated, and the shape paramgterderestimated, relative to
the approach which uses all exceedances. However, whenowargdor sampling variability,
we see that these differences are not significant.

Of greater practical interest are the estimated returrideVable 3 shows that estimates barely
differ for the ten year return period, but are consistentiyaber in the cluster peaks analysis for
the other three periods studied — in fact, quite substaysalfor the 200 and 1000 year return
periods. Since estimates of such long-range return lexelsfien used as a design requirement
in oceanographic situations (e.g. for the height of seasjallesigning to a level specified by
an analysis based on cluster peak excesses could resuttstastial under—protection.

o
€
Cluster peaks 0.187 -0.259
95% Confidence Interval (0.109, 0.265) (—0.545, 0.027)
All excesses 0.104 —-0.090
95% Confidence Interval (0.082, 0.126) (-0.217, 0.037)

Table 2: Maximum likelihood estimates, and associated \W&a#d confidence intervals, for the
GPD scale and shape parameters and the threshold exceedsnuegen using all excesses,
and just cluster peak excesses.

210 250 2200 21000
Cluster peaks 0.868 0.920 0.951 0.975

95% Confidence Interval (0.770, 1.031) (0.813,1.099) (0.838,1.008) (0.858, 1.063
All excesses 0.867 0.947 1.007 1.068

95% Confidence Interval (0.736, 1.067) (0.790, 1.193) (0.844,1.257) (0.891, 1).335

Table 3: Maximum likelihood estimates, and associated 9&8fle likelihood confidence in-
tervals, for four return levels (units are in metres).
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Profile log—likelihood for the 50—year return level
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Profile log—likelihood
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Figure 10: Profile log—likelihood surface, with correspmgdd5% confidence intervals, for the

50 year return levet;,. The dashed lines show the construction of the interval whas been

inflated to account for temporal dependence in the sea—slaige(since in this example all

threshold excesses were used). The dotted lines show hantéineal would be constructed if
dependence had been ignored.

Simulation study
So we know there are differences — some significant — in rdawel estimation when we use
(i) cluster peak excesses and (ii) all threshold excessbscWapproach are we to trust?

— The usual approach is to use cluster peaks, then we hawiedfg removed temporal
dependence

— However, return levels using this approach are underastidrelative to the procedure
which uses all threshold excesses

— Using cluster peak excesses could result in substantir+protection (i.e. not building
a sea—wall high enough to protect against the 1 in 1000 yege)su

Figure 11 below shows some results of a simulation study rakien by Fawcett and Walshaw
(2007), in which the GPD was fitted to a simulated dataset fackwthe true values af, £ and
various return levels werenown and the strength of temporal dependence was similar to that
of which is often observed in real-life environmental tinegiss. The bold lines correspond
to sampling distributions for the GPD parameters (and tworrelevels) using all threshold
excesses, the thin lines correspond to the equivalent whieg yust cluster peak excesses.
Clearly, for all parameters, the analysis using all thré&$lexcesses outperforms that which
uses just cluster peak excesses. Of most concern are thiestesun for the two return levels;
Fawcett and Walshaw (2007) found systematic underestimati return levels when using
cluster peak excesses (remember, this is the approach prast@nly adopted to circumvent
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the problem of temporal dependence), whereas estimatkss# teturn levels were much more
accurate under the approach using all threshold excesses.

&* é

Density
0 2 4 6 8 10 12 14

Density
01 2 3 4 5 6

0.2‘ 0.3‘ 0.4‘ 0A5‘ 0.6‘ 0A7‘ —1A0‘ —OAB‘ —0.6‘ —0.4‘ —0.2‘

£200

Density
Density

Figure 11: Sampling distributions of, 5 Z50 andzo090 Whena = 0.2, and using all threshold
excesses (heavy line) and cluster peak excesses (thinTihe}rue values for each parameter
are shown by the vertical lines.

2.2 Non-stationarity: trend

In Section 2.1 we demonstrated that, subject to specifiettiailons, the usual extreme value
limit models are still applicable in the presence of sherrtemporal dependence. In fact, we
can use the results for block maxima directly as they stdmwgh some thought is required
when considering threshold models. The general theoryatdoenextended for non—stationary
series; instead, it is usual to adopt a pragmatic approacisiofy the standard extreme value
models as basic templates that can be augmented by stdtsbdelling.

Figure 12 (over-leaf) below shows a time series plot of ahmaximum sea levels observed
at Fremantle, Western Australia, between 1900 and 1988ighe-hand—side plot shows these
sea—levels plotted against the annual mean value @dlaéhern Oscillation IndefSOI), which

is a proxy for meteorological volatility. There appears ®dn increase in annual maximum
sea levels through time, as well as an association betwerrabmaximum sea levels and the
mean SOI.

We can accommodate the time—trend shown in the plot on thehkeid—side of Figure 12 by
fitting the GEV distribution (as we have annual maxima), Blavang for a linear trend in the
underlying level of extreme behaviour. For example, if wBrdeZ; to be the annual maximum
sea level at Fremantle in yegrthen we might use

Zy ~ GEV(u(t),0,¢)
where

ut) = Bo+ pit. (11)
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Figure 12: Time series plot of annual maximum sea levelsrobgeat Fremantle (left), and a
plot of the mean SOI against annual maximum sea level (right)

In this way, variations through time in the observed proegesnodelled as a linear trend in the
location parameter of the appropriate extreme value mdakelGEYV in this case). We might
choose to adopt the following model fp(t):

u(t) = Bo+ 5i1SONE)

to allow for a linear association between the maximum seal laweart and the SOl in yeat.
Or perhaps a textitmultiple linear regression model 01, whereby

we can then assess our preferences between the stationdet (@) = /), the models
which allow for a dependence in time (alone), a dependenc&Cirthrough time (alone), and
the model which allows the underlying extremal behavious¢aletermined bpotha change
in time and SOI, by referring to the usual likelihood ratio tests (sititese models are nested).
For example, fitting a stationary GEV distribution to thes¢éad we get:

fi=1.482(0.017) & =0.141(0.011) £ = —0.217(0.064),

with a maximised log—likelihood of 43.6. Fitting the modehieh allows for a trend in time
(the model shown in 11), we get:

Bo = 1.387(0.027) By = 0.002(0.0005) o = 0.124(0.010) £ = —0.128(0.068)
with a maximised log—likelihood of 49.79. Referring

D = 2{49.79 — 43.6}
— 1238

to x? tables, we have a significant result, suggesting that theehvduich includes a linear trend
in time for u explains substantially more of the variation in the datantthee stationary model.
Figure 13 shows the time series plot of the Fremantle se& data with fitted estimates for
1 superimposed. Also shown, for comparison, is the fittedveste for, under the stationary
model.
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Figure 13: Time series plot of annual maximum sea levelsrobdeat Fremantle, with fitted
estimates fop, based on the stationary GEV model and the model which allows finear
trend in time.

Similar methodology actually suggests that the model irn&gqo 12 is the best model to use
here, i.e. that which allows for a trend independing on both time and SOI. In fact, we get:

By = 1.389(0.027) B = 0.002(0.0005) 35 = 0.055(0.020)
6 =0.121(0.010) & = —0.154(0.064)
giving
fi = 1.389+0.002¢ 4 0.055SOI(t).

Of course, more exotic model structures can be incorpornatedthis framework, including
guadratic models, higher—order polynomial models, andetsog@hich allow for non—normal
error structures. Trend can also be incorporated into therd&EV/GPD model parameters.

2.3 Non-stationarity: seasonality

The most widely adopted technique to deal with data whicly gaasonally is to partition the
data into seasons (within which we can assume the data torbedemeous), and perform a
separate extremal analysis on each season. Examples ohsumbproach can be found in
Smith (1989) and Walshaw (1994). These seasons might bexémple, ‘winter’ and ‘sum-
mer’, or ‘dry’ and ‘wet’, where the seasonal variation isarlg understood. However, for data
which exhibit less defined seasons, we can fit to separatehsiontyears. Disadvantages of
this approach are that a separate set of extremal parameterlise estimating for each season,
and that recombining these estimates is often non—triV@abvercome these disadvantages, an-
other approach is to allow the extremal parameters to vamjirmaously throughout the period
of seasonality — for example, within the year. Fourier fogas be fitted to the parameters, and
a model selected based on likelihood ratio tests. Howevalsheaw (1991) suggests that infer-
ences are barely altered in relation to a piecewise seagoagproach (for extreme wind gusts,
anyway), and that the significant increase in computatioe incurred by fitting continuously
varying parameters is therefore not worthwhile.
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3 R session: Weather extremes

To get started, you will need to be seated at a computer witisRilled, and initiat&®, which
is usually done through menus selected from $tert menu, or an icon. In addition the
librariesismev andevd should be installed. We will connect these, and install sofmaur
own supplementary routines, using the commands

> library(ismev)
> library(evd)
> source('Rstufflee.r’)

Provided these all go through without a hitch, we are readyoto

1. In this question, we will do a simple analysis of annual maxamwind speeds recorded
at Boston, Massachusetts, for 50 years from 1936 to 1985.

(a) Provided you have the fileoston.txt in your working directory, this can be
loaded intoRusing the command:

> boston<-scan(‘boston.txt’)

We have now created an R object calleaston which is a single column con-
taining consecutive years with annual maximum wind speedspi. We can have
a look at this by simply typing:

> poston

(b) We now wish to separate out tlyear and maximum components into separate
vectors. This can be done using the commands:

bosyear<-as.numeric(boston[seq(1,length(boston),2)] )
bosmax<-as.numeric(boston[seq(2,length(boston),2)])

which has the effect of creating vectdassyear andbosmax containing the years
and maxima respectively. [Note that when entering consexaimilar commands
in R, itis convenient to use the up arrow to bring up the presicommand and then
edit it!] We can check the vectors by simply typing:

> bosyear
> bosmax

(c) Now we can have a look at the annual maxima over time usiegommand:
> plot(bosyear,bosmax)
If you like you can give your plot some nice labels:
> plot(bosyear,bosmax,xlab="Year’,ylab="Wind speed (mp h)’,

main="Annual maximum wind speeds at Boston MA’)
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(d) We are now ready to carry out an extreme value analysi©eratnual maxima.
Since these are regarded as observations on i.i.d. randoables, we can forget
about the vectobosyear . We fit the GEV to the data ihosmax:

>gev.fit(bosmax)

Notice the output:
x $conv gives a value of zero (in row [1] of the output), which indessuccess-
ful convergence, i.e. no errors in fitting;
« $nllh  shows the negative (maximised) log—likelihood;
x $mle shows the maximum likelihood estimates fgoro and¢ respectively;
x $se gives the associated standard errors for these parameters.

(e) We can investigate the model performance using the ili-ehagnostics. First we
must store the relevant information from the fit in an objeetnvame ourselves, e.g.

> fitl<-gev.fit(bosmax) > gev.diag(fitl)

creates the ‘fit’ objecfitl  and then runs the diagnostic routines on the stored
object. Make sure you interpret the four plots in the conté@ection 1.2.6.

() We can obtain inference on return levels using the aoid#i command which we
have supplied irRstufflee.R  , which is calledgev.ret(data,period)
This command refits the GEV model, and then provides us wélinference on the
specified return level. E.g. for th®0—year levely; oy, we would type:

> gev.ret(bosmax,100)

In addition to the information we obtained earlier, we getthO—year return level
estimate with associated standard error. Notice how thisimea up with the return
level plot in the diagnostic plots.

(g) If we want to construct a confidence interval tgg,, we are better off using the
method of profile-likelihood as described in Section 1.2/ can use the func-
tion gev.prof(fit,period,lower-bound, upper-bound) . This com-
mand is slightly unstable, and relies on an appropriatecehoi the bounds for the
profile—likelihood. For the Boston annual maxima, the failog works well for the
100—year level:

> gev.prof(fit1,100,75,130)

Note that this enables us to read off ¥4 confidence interval (the default) for
¢100- Suppose we wanted®% interval we would use:

> gev.prof(fit1,100,<lower>,<upper>,conf=0.99)
for appropriate choices eflower> and<upper> . You may like to experiment.
Note how asymmetrical these intervals are, and how mighggativould be to base

the confidence intervals ah1.96(s.e)!
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2. In this question, we will analyse annual maximum sea levrlsrfi) observed at Venice,
Italy, between the years 1931 and 1981 (inclusive).

(a) Load the data into R by typing:

(b)

()

(d)

> data(venice)
Now look at the data by typing
> venice

You should see a matrix with 51 rows (one for each of the ye@8441981) and 11
columns. The values in each column correspond to the yedthatenlargest sea
levels observed in each of these years (in descending dfdegxample, in 1979,
the ten largest sea levels were: 166, 140, 131, 130, 12211868115, 115, 112, the
largest being 166cm.

We intend to fit the Generalised Extreme Value distrinutio the set of annual
maxima — i.e. the largest sea levels only (166cm in 1979,Xample). Extract the
set of annual maxima in the following way:

(i) Create a new vector to store the set of annual sea levehmagxy typing:

> maxima<-vector(’numeric’, length=51)
(i) Now type:

> maxima<-venice[,2]

which will store the observations from column 2uanice -—i.e. the largest
sea levels from each year — in the veatmaxima.

We can fit the Generalised Extreme Value distribution to #teo$ annual maxima
using the functiorgev.fit . Type

> gev.fit(maxima)

Write down the maximum likelihood estimates pf o and &, along with their
estimated standard errors. Also make a note of the valueeomiéximised log—
likelihood.

Now produce a time series plot of the set of annual maxiyigbing

> plot(maxima ~venice[,1],type="I',xlab="Year,ylab="Sea level

(cm)’)

which will plot the annual maxima against the first columrmvénice , which cor-
responds to the year. This will also provide convenientlabs both ther andy
axes in the plot. Does the time series plot of annual maxirok $bationary?

We will now attempt to model variations through time ie gsequence of annual sea
level maxima by modelling a linear trend in the location paetery, i.e. u(t) =
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Bo + B1(t), wheret represents the time—point (6= 1 corresponds to 1931, etc.)
Set up a time matrix by typing:

> time<-matrix(1:51,ncol=1)
Now type
> gev.fit(maxima, ydat=time, mul=1)

which tells R to use the matrixdat as a matrix of covariates, amdul=1 tells
R which column in that matrix to use (as well as which parantetese it for —u!).

Write down the maximum likelihood estimates féy, 51, o and¢, along with their
estimated standard errors, and make a note of the maxinugetikelihood.

(e) Use the maximised log-likelihood values from parts fij &) to perform a like-
lihood ratio test to see if the model which allows for a tremdvides a significant
improvement over the stationary fit (Hing? (5%) = 3.84).

() Write down the simple linear regression equationgdound from the fit in part (d),
i.e. u(t) = Bo + F1(t). We will now write an R function to calculate the fitted trend
at each time point, and then superimpose this on the plougextlin part (c). Type

> trend.plot<-vector('numeric’,51)

The vectortrend.plot will take the fitted values of the trend fqr obtained
from the equation. Now write

for(i in 1:51)

{
trend.plot[i]<-betaO+betal *timel[i, 1]

}

>
+
+
+
wherebeta0 andbetal should be replaced with the estimated values found in
the fit in part (d). Now type

> lines(trend.plot ~venice[,1])

which should superimpose a plot of the trend line againsyé&as on the original
time series plot.
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3. In this question we will investigate the use of “Peaks OvereEhold” to circumvent the
problems of serial dependence when modelling thresholdeslances. We will do this
by examining hourly gust maximum wind speeds observed &b Bigdfield, a location
in the Peak District in central northern England.

(a) These data were collected by the U.K. Meteorologicalc®ffand are not included

(b)

()

(d)

with any of the standard R packages. Thus, to load the date, ty
> gusts<-scan(’bradfield.txt’)

which will store the data in a vector callggists . Now produce a time series
plot of these data, by typing

> plot(ts(gusts))

The data you see correspond to the hourly gust maximum wiaddsp(in knots)
collected over a ten—year period (1975-1984 inclusivehearmonth of January;
thus, the first observation is the maximum gust wind speedrgbd between mid-
night and 01:00 on the 1st January 1975, etc. We restrict walysis to January
because the U.K. has a seasonally varying wind climate, la@dtrongest wind
speeds are usually observed in the month of January (i.eannaly we observe
'genuine’ extremes of wind speed). Comment on the naturkistime series.

We will now investigate the extent of temporal depend@andhe series.
(i) Type

> acf(gusts) and
> pacf(gusts)

These commands will produce plots of the autocorrelation, partial auto-
correlation function.

(i) Now type
> plot(gusts[1:7259] ~gusts[2:7260])

This will produce a plot of the time series against the seatdag 1 (the length
of this dataset is 7260).

Using your plots in (i) and (ii) above, comment on the degreshort—term temporal
dependence present in the series.

We now intend to fit the Generalised Pareto Distributi@®D) to a set of threshold
exceedances. Use the command

> mrl.plot(gusts)

to produce a mean residual life plot for the gust data, andthiseto choose an
appropriate threshold for identifying extremes.

Now fit the GPD to the set of threshold exceedances, bygusin
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(€)

> gpd.fit(gusts,threshold)

wherethreshold is your chosen threshold from the mean residual life plot in
part (c). Make a note of the estimates toand¢ (as well as their estimated stan-
dard errors).

Nowdeclustetthe series of gusts and emploff@aks Over Thresholhalysis. Type
> cluster.peaks<-cluster10(gusts,threshold)

again, wherethreshold is the threshold identified in part (c). The function
clusterl0  uses a value of = 10 observations to identify clusters of extremes,
i.e. a cluster of extremes is deemed to have terminated &sasoat least 10 obser-
vations fall below the threshold. Now fit the GPD to the setlo§ter peak excesses,
and make a note of the parameter estimates and estimatedstanror§Note: you
can vary the declustering interval by using different functions, e.gl ust er 20
orcl ust er 30]

() We will now calculate thehreshold exceedance rater each of the approaches in

(9)

(h)

parts (d) and (e). Typing

> length(gusts[gusts>threshold])/length(gusts) and
> |ength(cluster.peaks)/length(gusts)

wherethreshold is as before, will work out the threshold exceedance ate
for all excesses, antduster peakexcesses, respectively. Write down these thresh-
old exceedance rates.

You should now compare estimates of the 1000—observagimrn level using (i)
all threshold excesses and (ii) cluster peak excessesagypi

> gpd.ret(data,threshold,1000)

butreplacinglata with gusts and thercluster.peaks (and thethreshold

is that identified in part (c)) will estimate this value #lt excesses antluster peak
excesses, respectively. The output produced will be thes sssYbefore — i.e. you
will get estimates of the GPD parameters and their standasdse but now you will
also get an estimate of the specified return level (and itglsta error via the delta
method).

Comment on your estimates of the 1000—observationndawel in part (g) and
your GPD parameter estimates in parts (d) and (e). Whichoagprto inference do
you trust most?
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4 Multivariate extremes

4.1 Introduction

In this section we consider the problems we face if we wish ¢alehthe extremal behaviour
of two or more (dependent) processes simultaneously. Tdrerseveral reasons why we may
wish to do this:

¢ to model the extreme behaviour of a particular variable eegeral nearby locations (e.g.
rainfall over a network of sites);

¢ to model the joint extremes of two or more different varigldéa particular location (e.g.
wind and rain at a site);

¢ to model the joint behaviour of extremes which occur as coutses observations in a
time—series (e.g. consecutive hourly maximum wind gustsidwa storm).

All of these problems suggest fitting an appropriate lingtmultivariate distribution to the
relevant data. However, as we shall see, the derivation @i aumultivariate distribution is
not as easy as we might hope. The analogy with the Normallaistvn as a model for means
breaks down as we move intodimensions! It is not even clear what the ‘relevant dataustho
be! Most of the increased complexity is apparent in the mosmfl to 2 dimensions, so we
will focus largely on bivariate problems.

4.2 Componentwise maxima models
4.2.1 Example: network of rainfall measurements

Suppose we want to study the joint extremes of daily rairfedumulations at the network of 8
sites shown in Figure 14.

[e]YIN 2008 Jun 311:59:13 | OMC - Martin Weinelt 0510

Figure 14: Eight rainfall recording stations in southerot®&mnd

Such issues are of great interest, especially currengjygeven the severe flooding experienced
in the UK recently. Suppose we have sequences of daily tataflall at each location. There
IS liable to be strong inter—site dependence in extremehgersense that days with heavy rain
are liable to occur simultaneously across locations. Themaltivariate observations age-
dimensional vectors of the daily rainfall over the eighésit
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Now suppose we wish to take a block—maxima approach, witickd’ being years. For any
given year, the 8—dimensional vector of annual maxima igelyl to be one of the raw mul-
tivariate observations. Let's simplify to the bivariatesea Let(.X, Y1), (X5, Y2), ... be i.i.d.
vectors with distribution functio’(x, y). Now consider the componentwise block maxima

M, = max {X;} and M,, = max {Y:}.

T e RS

We define thevector of componentwise maxirttabe
1\/In = (M:c,m My,n)-

M,, is not necessarily one of the original observatioNs, Y;). Nevertheless, we are interested
in the limiting behaviour ofM,, asn — oo. The first point to note is that standard univariate
extreme value results apply in each margin. When consigéh@ dependence, this allows us
to make a simplifying assumption.

We assume that th&,; andY; variables have a known marginal distribution. It is coneenito
assume this is the GEV(0,1,1) distribution, also known asuthit Fréchet distribution, which
has c.d.f.

F(z) = exp(—1/z), z>0.

This gives rise to a very simple normalization of maxima:
Pr(X; < z) =Pr(M,,/n < z)=exp(—1/z), x>0,

(and similarly forY;). So if we consider the re—scaled vector

M; = (e (X0 /0,y (/1)

..... n )

the margins are unit Fréchet for alland hence we can characterize the limiting joint behaviour
of M without having to worry about the margins. Unfortunatelyinating parametric family
exists! (for bivariate extremes, or multivariate extrenmegeneral).

4.2.2 Theorem: limiting distributions for bivariate extre mes

Let M;, = (M, M;, ) be the normalized maxima as above, where(tkig Y;) are i.i.d. with

z,n?

standard Fréchet marginal distributions. Then if

Pr(M; ,, M, ,) — G(z,y),

z,m’

whereG is non—degenerate, théhhas the form

G(z,y) =exp{-V(z,y)}; >0, y>0 (13)
where: .
Vix,y) = 2/0 max (%, 1_Tw) dH (w) (14)

andH is a distribution function orf0, 1] satisfying the mean constraint:
1
/ wdH (w) = 0.5. (15)
0
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Hence the class of bivariate extreme value distributions ne-to-one correspondence with
distribution functionsH satisfying the constraint (15). I is differentiable with density:,
then (14) becomes

w 1l—w

V(z,y) = 2 /01 max (—, —) h(w)duw.

T )
However some simple models arise whigns not differentiable. E.g. iff places mas8.5 on
each ofw = 0 andw = 1, then we get

G(z,y) =exp{—(z"+y "}, 2>0,y>0,

corresponding to independenandy.

Since the GEV provides the complete class of marginal linstridbutions, then the complete
class of bivariate extreme value distributions is obtaiaebllows. If we suppos&” andY” are
GEV with parametersy.,, 0., £,) and(u,, o,, §,) respectively, then the transformations

1/& 1/&y
()] w52

obtain unit Fréchet margins. Hence
G(z,y) = exp{=V(Z,9)}

is a bivariate extreme value distribution with the apprafgimargins for valid’(.), and pro-
vided[1 + &,(z — ps) /o] > 0] and[1 + &, (x — ) /o,] > 0].

4.2.3 Modelling bivariate extremes in practice

In practice, modelling usually involves identifying a par@iric sub—family with appropriate
flexibility to handle the structure inherent in the data. Misdcan be fitted, e.g. by maximum-—
likelihood estimation, either in two steps (marginal comeots followed by dependence func-
tion), or in a single sweep. All of these procedures, inalgdhe choice of models, are handled
in a very similar way when dealing with threshold exceedan¥ge consider the details in the
next section.

4.3 Threshold excess models

We want to define our bivariate extremes in those obsenatidnch exceed a threshold in one
or other margin. For our bivariate observatioX, V), let's focus onX. We have already seen
that the distribution function for the exceedances of ashoéd« by a variableX, conditional
on X > u for large enoughu, is given by:

£ —u) }—1/5

g

G(x):l—)\{lJr

defined on{z —u:z —wu>0and(1+&(z —u) /o) > 0}, where # 0, 0 > 0, and\ =
Pr (X > u). Now we can obtain a unit Fréchet margin with the transforomat

X=- (10g{1—>\$ {H@]%})l.
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If we apply the analogous transformation to in thenargin, we obtain

F(z,9) =exp{-V(2,9)}; = >u,, y>uy,,

V(z,y) = 2/01 max (fl_—”) dH ()

r oy
andH is a distribution function o0, 1] satisfying the mean constraint:

/Olw dH (w) = 0.5.

where:

4.3.1 Example: wave—surge data

Here we choose a different type of example of dependencestmathfall problem considered

in Section 4.2. Here we consider two variables recordedumestly at the same site. A series
of 3-hourly measurements on sea—surge were obtained framyNesouthwest England. For

suitably high thresholds, we can identify which observadiare extreme.

4.3.2 Threshold representation

Bivariate threshold models are complicated by the postiltiiat a bivariate paifz, y) may be
an ‘exceedance’ and yet exceed the specified threshold yrooiel of the two components.

Wave-Surge Data (1971-1977, Newlyn, Cornwall)
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Figure 15: Threshold classification of bivariate data

4.3.3 Modelling the dependence structure

The class of bivariate extreme value models contains manyiés of distributions which can
be used to model the dependence structure in the data. Tkedkspce structure must satisfy
the conditions orf{ (w). Possible choices are:

Logistic Model — symmetric
Negative Logistic Model
Bilogistic Model — asymmetric
e Dirichlet Model

Here we will focus on the logistic model and the bilogisticaebas two commonly used but
contrasting choices.
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4.3.4 The Logistic model
G (x,y) = exp {— (wil/a + yil/o‘)a}
wherez > 0,y > 0 anda € (0, 1).
e o — 1 corresponds to independent variables.
e o — ( corresponds to perfectly dependent variables.

e This model is symmetric — the variables are exchangeable.

4.3.5 The Bilogistic model
G (z,y) = exp {wvl’“ +y(l- 7)1_5}
wherel < a < 1,0 < § < 1 andy = v (z, y; «, ) is the solution of:
(1—a)z(1=9)"=(1=8)y"

¢ Independence is obtained when= 5 — 1 and when one o or (3 is fixed and the other
approaches 1.

e Whena =  the model reduces to the logistic model.

e The value ol — 3 determines the extent of asymmetry in the dependence steuct

4.3.6 Likelihood calculations

e For points in Region 1, the bivariate model structure shoppiies, and the density of
F (z,7) gives the appropriate likelihood component.

¢ In other regions, the likelihood component for the pointshhe censored.

4.3.7 The likelihood function

The likelihood function can be written as:

wheref gives the parameters éf and

(

£E| i) € Region
or . _
Y (0: (z,y) =S 2 ‘(My) if (x,y) € Region 2
o if (z,y) € Region 3
Y (uz,y)
(z,y)

€ Region 4

| F (Ug, Uy) if (z,

The various models can be fitted to data by maximum likelihestimation using routines
available in theR package=vd . We will explore this in the secord practical.
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4.4 Point process representation

It helps our understanding of bivariate (and hence mulate) extremes to think in terms of a
point process model as follows. Let;, y1), (z2,¥2), . . . be a sequence of independent bivariate
observations form a distribution with standard Fréchetgimarsuch that

Pr{M;, <z My, <y} — G(z,y).
Let V,, be a sequence of point processes defined by
N, ={(n o, n ), ..., (0 te,, n yn) b

Then
N, — N

on regions bounded away frof@,0), where N is a nhon—homogeneous Poisson process on
(0,00) x (0,00). Moreover, if we change our coordinates to an angular-r#olien (‘pseudo-
polar’) by setting

X
r=x and w= ,
Tty
then the intensity function oV is
dH (w)

Ar,w) =2 R

where H is related toG in the usual way (Equations (13) — (15)). This is helpful hes=-
andw are measures of distance (from the origin) and angle (frem:taxis) respectively, and
the dependence functiaii determines the angular spread of points\gfand is independent
of radial distance If H is differentiable, then since measures the relative size:ofo y in the
pair (z,y), thenh(.) determines the density of events of different relative.slzes fairly easy
now to picture what different densitiés.) will look like it terms of the scatter of points in the
limiting point processV.

4.4.1 The point process representation in practice

We assume the Poisson limit to be a reasonable approxintatiy on an appropriate region.
Convergence is guaranteed on any region bounded from thmoand things are especially
simple if we choose a region of frorh = {(z,y) : /n+y/n > ry} for suitably large-,, since

then .
A(A) =2 / W () =2 / dr / dH () = 2/r0,
AT r w=0

which is constant with respect to the parameterHolf we assumed has density:, then the
likelihood is given by

L(0; (v1,y1), -, (Tn,yn)) = exp{A(A)} H )‘(-T(i)/ﬂw y(i)/”)

Na
x Hh(wi),
i=1
wherew; = z¢;)/(zu) + yq)) for the Ny points (z(;), yu)) which are inA. [This is based on

assuming that we have already transformed the margins s(tha, ), . . ., (z,, y,) have stan-
dard Fréchet distributions.] Now we can fit the model usingimam-likelihood estimation.
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4.4.2 Point process model for wave—surge data

A point process model was fitted to the wave—surge data aftesformation to unit Fréchet

margins, and using a threshold of the fotkh+ Y = ry, wherer, was chosen so that the

marginal thresholds are both at the 95th percentile. Eittie two dependence models (logistic
and bilogistic) to the wave—surge data we obtain the folhguyesults:

Model log-lik. o 16}
Logistic ~ 227.2  0.659 (0.013)
Bilogistic  230.2 0.704 (0.024) 0.603 (0.032)

These results suggest a fairly weak, while clearly signiticdependence. The logistic and
bilogistic models can be compared using a likelihood raggt,tand significant asymmetry is
suggested. Itis also possible to produce graphs of the fitteflfunctions, with the histograms
of the empiricalv values super—imposed. Here we just show some dependerstenimfor
the logistic model.
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Figure 16: Some dependence functions for the logisitc model

4.5 Asymptotic dependence and independence

One key problem with using limit distributions for multivate extremes is that they force one
of two possibilities:

1. extremes occur independently in the different margins;

2. extremes occur with a dependence structure which cosfeonan asymptotic extreme
value distribution.
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In practice this imposition is not helpful ...it is often thase that asymptotic independence
is suggested by the data, and yet quite strong dependencesenp, even at high levels. Data
that seem to be dependent at ordinary levels may not nedgdsadependent in the limiting
distribution. Consider the regiaf = {& > u, X > v}. Then:

)

n n

Y v C'/n, Asymptotic Dependence
Pr K_ _) eA]
C/n*, ExactIndependence

whereC' is a constant term that does not dependion

4.5.1 The coefficient of tail dependence

Consider the variable:
T=min(X,Y).

The distribution function of " is given by:

K

t > u,

whereu is a threshold above which the data are regarded as extraiie &a (almost) constant
term with respect ta. & gives a measure of extremal dependence betweeamdY and is
known as the Coefficient of tail dependencé
4.5.2 Inference ford
The likelihood function fofT" is:

. E "™ (E\"™ 17,-0+1/9)
wheren,, is the number of observations that satigfy> ». Maximum likelihood estimation

gives the estimate:
SO t;
o=— > 1 =
> (%)

=1
evaluated for the,, points in the data set aboue § describes the limiting dependence structure:

6 = 1 implies asymptotic dependence.
% < & < 1 implies positive association.
e §= % implies near independence.

0 < & < 5 implies negative association.
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4.5.3 Wave—surge data

Plots ofé against increasing give an indication of the level of dependence present betwee
two processes in the limiting distribution.
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Figure 17: Wave-Surge data with 95% quantil&splot with 95% confidence bounds.

6 = 1 is within the 95% confidence bounds for allasu increases, suggesting that wave—
height and surge am@symptotically independent

Research into modelling data in such instances, i.e. wihere is still dependence within the
‘extremes’ in the data set, but yet asymptotic independmssagggested, is all fairly recent. The
most prominent work is the article by Heffernan and Tawn @m$2004). Here they develop
semiparametric models based on assuming observationstegme in at least one component,
and then conditioning on this. This approach can be quitesynesmplementation, combining
as it does a range of different estimation procedures, ameéad hocassumptions concerning
the parametric forms of the key normalising constants. kexériefly consider another ap-
proach, suggested by (Bortet al., 2000), and currently the subject of ongoing work by Atyeo
and Walshaw.

45.4 The multivariate Gaussian tail model

The multivariate Gaussian tail model for the multivariaistbution functionF is defined on
thejoint tail region (Bortotet al,, 2000):

R(u) = (u1,00) X ... X (up, 00)

whereu = (uq,...,u,). (e.g. Region 1 in Figure 15). For each observation in thetjoi
tail region R(u) we transform each marginal observation to have a standansh&onarginal
distribution, and then apply the-dimensional standard Normal distribution function. Werth
transformbackto extreme value margins. This provides a more realisticasgmtation of the
dependence, while retaining the asymptotic argumentfiontarginal extremes.

We have been able to fit such models to $idimensional rainfall problem associated with

Figure 14, however inference for this problem was much sitedl by adopting a Bayesian
approach.
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5 Bayesian inference for extremes

Throughout this short course, the method of maximum likedthhas provided a general and
flexible technique for parameter estimation. Given a (gehg@arameter vectot) within a
family ¥, the likelihood function is the probability (density) ofetlobserved data as a function
of 1. Values ofy that have high likelihood correspond to models which givghtprobability
to the observed data. The principle of maximum likelihootinestion is to adopt the model
with greatest likelihood; of all the models under consitierg this is the one that assigns
the highest probability to the observed data. Other intemkprocedures, such as “method
of moments”, provide viable alternatives to maximum likelod estimation; moments—based
techniques choosg optimally by equating model-based and empirical momenmis salving
for ¢ to obtain parameter estimates. These, and other proce@uiesas probability weighted
moments,.L—moments and ranked set estimation), are discussed i getaimongst other
places, Kotz and Nadarajah (2000).

5.1 General theory

Bayesian techniques offer an alternative way to draw imiege from the likelihood func-
tion, which many practitioners often prefer. As in the noay8sian setting, we assume data
x = (x1,...,x,) to be realisations of a random variable whose density fatlsima parametric
family 7 = {f(x;¢) : ¢» € ¥}. However, parameters of a distribution are now treatedras ra
dom variables, for which we specifyrior distributions— distributions of the parametepsior

to the inclusion of data. The specification of these priotritistions enables us to supplement
the information provided by the data — which, in extreme gadunalyses, is often very limited
— with other sources of information. At the same time, it carcbntended that, since different
analysts might specify different priors, conclusions lmeeasubjective.

Leaving aside the arguments for and against the Bayesiahoah@bgy, suppose we model
our observed data using the probability density functiof{x; ). The likelihood function for
1 is thereforeL(¢|x) = f(a; ). Also, suppose our prior beliefs about likely valueg/oére
expressed by the probability density functiof)). We can combine both pieces of information
using Bayes Theorem, which states that

T(Yle) = ——F—, (16)
where

/w(z/;)L(z,b\a;)dzjj if 2) is continuous
v

fle) =
> w()L(splx) i ¢ is discrete.

v

Sincef(x) is not a function ofyy, Bayes Theorem can be written as

m(Yle) oo () x L(vhlx)

i.e. posterior o< prior x likelihood.

In equation (16)7(¢|x) is the posteriordistribution of the parameter vectgr, b € ¥, i.e.
the distribution ofy after the inclusion of the data. This prior distribution is oftehgveat
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interest, since the prior—posterior changes represectidueges in our beliefs after the data has
been included in the analysis. However, computation of #dinator in (16) can be prob-
lematic, and usually analytically intractable. There ithiag particularly special about the fact
that equation (16) represents a Bayesian posterior; givgs@mplex non—standard probability
distribution, we need ways to understand it, to calculatenidments, to compute its conditional
and marginal distributions and their moments, all of whiohlild require troublesome integra-
tion as in the denominator of equation (16). We need a way dérstanding posterior densities
which does not rely on being able to analytically integratekernel of the posterior; stochastic
simulation is one possible solution.

5.2 Markov chain Monte Carlo

The recent explosion in Markov chain Monte Carlo (MCMC) teicfues owes largely to their
application in Bayesian inference. The idea here is to predimulated values from the poste-
rior distribution — not exactly, as this is usually unaclaiele, but through an appropriate MCMC
technique.

5.2.1 The Gibbs sampler

The Gibbs sampler is a way of simulating from multivariatstdbutions based only on the
ability to simulate from conditional distributions. Suggothe density of interest (usually the
posterior density) is (), wherey = (¢4, ...,1,)’, and that the full conditionals

W(Qﬂi‘@/)l, e 777Z)i—17¢i+17 Ce 777Z)d) = 7T(¢Z|¢_Z) = 7Ti(¢i)7 1= ]_, Ce . ,d

are available for simulating from/(_; denotes the parameter vectbexcludingy;). The Gibbs
sampler uses the following algorithm:

1. Ini(ti?lise th(e) iteration counter tb = 1. Initialise the state of the chain tp® =
( 10 e dO )

2. Obtain a new value® from ¢»*~Y by successive generation of values

k k—1 k—1
R R I )
W~ m( | Y Yy

k k k
o~ w(ae® ),

3. Change countérto k£ + 1, and return to step 2.

Each simulated value depends only on the previous simwaileé, and not any other previous
values or the iteration countér The Gibbs sampler can be used in isolation if we can readily
simulate from the full conditional distributions; howey#ris is not always the case. Fortu-
nately, the Gibbs sampler can be combined with Metropolastiigs schemes when the full
conditionals are difficult to simulate from.
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5.2.2 Metropolis—Hastings sampling

Suppose again that(v)) is the density of interest. Further, suppose that we havee sin-
trary transition kerneb(v,, |, v;) (which is easy to simulate from) for iterative simulation of
successive values. Then consider the following algorithm:

1. Initialise the iteration counter to= 1, and initialise the chain tg);
2. Generate a proposed valpéusing the kerneb(ep* =1 4));

3. Evaluate thacceptance probability1(¢<k), 1)’) of the proposed move, where

m(¢) L' |2)p(¢’, ) } ,
m($)L(|z)p(, ¢') |

Ap.4) = min {1,

4. Putyp® = 4 with probability A(x* Y '), and putp® = *~1 otherwise;
5. Change the counter frofto & + 1 and return to step 2.

So at each stage, a new value is generated from the propss#dution. This is either accepted,
in which case the chain moves, or rejected, in which caselthimstays where it is. Whether or
not the move is accepted or rejected depends on the accepeoimability which itself depends
on the relationship between the density of interest and tbpgsal distribution. Common
choices for the proposal distribution include symmetriaiok, wherep(v, ¥') = p(¢’, 1),
and random walk chains, where the propagaht iterationk is 1)’ = 1) + ¢, where the:;, are
[ID random variables.

5.2.3 Hybrid methods

Here, we combine Gibbs sampling and Metropolis—Hastingsrses to form hybrid Markov
chains whose stationary distribution is the distributidnnterest. For example, given a mul-
tivariate distribution whose full conditionals are awkdao simulate from directly, we can
define a Metropolis—Hastings scheme for each full condaicend apply them to each compo-
nent in turn for each iteration. This is similar to Gibbs séingp but each component update
is a Metropolis—Hastings update, instead of a direct sitraridrom the full conditional. An-
other scheme, known as “Metropolis within Gibbs”, goes tigtoeach full conditional in turn,
simulating directly from the full conditionals wherevergsible, and carrying out a Metropolis—
Hastings update elsewhere.

5.3 Bayesian inference for extremes

There are various (and some may say compelling) reasonsdterpng a Bayesian analysis
of extremes over the more traditional likelihood approashalready discussed, since extreme
data are (by their very nature) quite scarce, the abilithwtmiporate other sources of informa-
tion through a prior distribution has obvious appeal. Bayégorem also leads to an inference
that comprises a complete distribution, meaning that thianee of the posterior distribution,
for example, can be used to summarise the precision of tleeenée, without having to rely
upon asymptotic theory. Also, implicit in the Bayesian femork is the concept of thpre-
dictive distribution This distribution describes how likely are different cates of a future

39



experiment. The predictive probability density functisrgiven by

fylz) = L £ (/) (3| )dap (17)

whena is continuous. From equation (17), we can see that the gneglitistribution is formed
by weighting the possible values fgrin the future experimenf(y|+) by how likely we believe
they are to occur after seeing the data. For example, a siitaddel for the threshold excess
Y of a process i ~ GPD(c,¢). Estimation ofiy = (0,&) could be made on the basis of
previous observations = (x4, ..., z,). Thus, in the Bayesian framework, we would have

Pr{Y <ylors. ) = [ PrY < i) n(laldy. (18)

Equation (18) gives the distribution of a future threshotdess, allowing for both parameter
uncertainty and randomness in future observations. Splvin

Pr{Y < g, pred®1,..., 20} = 1— %
for ¢, prea therefore gives an estimate of theyear return level that incorporates uncertainty due
to model estimation. Though (17) may seem analyticallyaictable, it can be approximated
if the posterior distribution has been estimated usingef@mple, MCMC. After removal of
the “burn—in” period, the MCMC procedure gives a sample. . . 15 that can be regarded as
realisations from the stationary distributiefwy|z). Thus

B
1
Pr{Y S qT,pred|$17 cee 7xn} ~ E Z Pr{Y S QT,pI’ed|’l/Ji} )
=1

which we can solve fog, yeq Using a numerical solver. Another reason lending appeal to
Bayesian inference for extremes is that it is not dependerthe regularity assumptions re-
quired by the theory of maximum likelihood. For example, wije< —0.5, maximum like-
lihood estimation breaks down — in this situation, a Bayesipproach provides a feasible
alternative.

5.3.1 Example: Annual maximum sea levels: Port Pirie, SoutiAustralia

Figure 18 shows a time series plot of annual maximum seadat@nother Australian location

— Port Pirie, in South Australia. Notice that, unlike theresponding data from Fremantle in

Wester Australia, there doesn’'t appear to be any trend snsiiies; in fact, the series appear
stationary.

We use the GEV as a model for the annual maximum sea levelsraPRie Z; in yearzi,
i.e.

Z; ~ GEV(u,0,¢), i=1,...,65.

When employing MCMC methods it is common to re—parameteéheeGEV scale parameter
and work withny = log(o) to retain the positivity of this parameter. In the absencanyfexpert
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Figure 18: Time series plot of annual maximum sea levelsrobdeat Port Pirie.

prior information regarding the three parameters of the GlS¢ribution, we adopt a ‘naive’
approach and use largely non—informative, independeatpfor these, namely

m(1) ~ N(0,10000),
m(n) ~ N(0,10000)  and
7€) ~ N(0,100),

the large variances of these distributions imposing nesrpflors.

We use a Metropolis—Hastings MCMC sampling scheme; aftgingeinitial starting values
for ¢ = (i, n, &), we use an arbitrary probability rujgp, ., |¢) for iterative simulation of
successive values in the chain. Once this rule has been aigmhérate a candidate valjé
for 4, ,, we accept this with probabilityl (see 5.2.2); otherwise};,,, = ;. Here, we use a
random walkprocedure to generate candidate values, i.e.

!/

[ R
n = m+e and
6/ = 62 + €,

with the e being normally distributed with zero mean and varianggs,, andv, respectively.
In fact, the choice of algorithm and its ‘tuning parametéts’, v,, andv,) does not affect the
model. It does, however, affect the efficiency of the aldont Some believe there is a ‘fine art’
to tuning the algorithm used, but it is common to aim for anrallecceptance rate of around
30%.

Initialising with ¢»© = (5,0.5,0.1), we get the following values generated by 5000 iterations
of the MCMC scheme (see Figure 19). The settling—in peri@seto take around 300 iter-
ations, after which the chain seems to have converged. €ttigng—in period is often known
as theburn—in Thus, after deleting the first 300 simulations, the renmagjrd700 simulated
values can be treated as dependent realisations whosenaladgtribution is the target pos-
terior. Over-leaf, in Figure 20, is a panel of plots correging to the sampling distributions
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of the three GEV parameters (after the removal of burn—ig)well as the 100—year return
level. The sampling distribution for the posterior of thaure level has been obtained by inver-

sion of the distribution function for the GEV (Equation 1)datien by repeated substitution of
M(301)’ 0(301)’ 5(301)7 o M(5000)7 0(5000)7 5(5000)_

The posterior means, standard deviations and 95% creditdevals are shown in Table 4,
along with the corresponding maximum likelihood estimdtesomparison.
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Figure 19: MCMC realisations of the GEV parameters in a Bayeanalysis of the Port Pirie
sea level maxima.

u o § q100
Posterior mean (st. dev})3.874 (0.028)| 0.203 (0.021)| —0.024 (0.098)| 4.788 (0.255)

distribution ~ 95% Cl | (3.819, 3.932) (0.166, 0.249) (-0.196, 0.182) (4.516, 5.375
Maximum _ m.le. (s.e.) | 3.872 (0.028)] 0.198 (0.020)| -0.040 (0.098)| 4.692 (0.158)
likelihood 95% Cl | (3.821, 3.930) (0.158, 0.238) (~0.242, 0.142) (4.501, 5.270

Table 4. Summary statistics for the posterior locationlesaad shape, and the 100—year return
level. Shown also, for comparison, are the correspondihg s.the confidence interval for the
return level being found via profile likelihood.
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Figure 20: Sampling distributions for the posterior daasiofu, o, £ and the 100—year return
level.

5.3.2 More complex structures: A random effects model for etxeme wind speeds

In this section we briefly discuss the work which Lee Fawcditpresent at next week’s TIES
conference. In this work, we develop a hierarchical modehfaurly maximum wind speeds
over a region of central and northern England. The data usesist of hourly gust maximum
wind speeds recorded for the British Meteorological Officeneelve locations (see Figure 21).
We construct a model which is based on a standard limitingeme value distribution, but
incorporates random effects for the sites, for seasonatiamn, and for the serial dependence
inherent in the time series of hourly maximum speeds obthatecach site. The Bayesian
paradigm provides the most feasible modelling approachafiiuce the rich meteorological
structure present in these data. Figure 22 illustrates ploetory analysis of data from two
contrasting sites, Nottingham and Bradfield. Shown are senes plots of the hourly maxima,
histograms, and a plot of the time series against the veediteg 1. The first three years of
data only are used in each case, to best illustrate the reldaga characteristics. We now (very
briefly) outline the model structure used.

Modelling threshold exceedances

We will start with the Generalised Pareto Distribution as a@del for threshold excesses; by
doing so, we can incorporate more extreme data in our asalysn if we were to select “block
maxima”, and so increase the precision of our analysis. ,Wim&l speed excesses over a high
threshold will be modelled with a GRDB, ¢).
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Figure 21: Location of wind speed stations.
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Figure 22: Time series plots and histograms of hourly gusseved at Bradfield (top row) and
Nottingham (bottom row) over a three year period (1975-li8¢lusive). Also shown are plots
of the time series against the lagged series.

Site and seasonal variability

For our purposes, we need the GPD parameters to vary actessad seasonally. We take
a pragmatic approach to seasonality, partitioning the alneycle into twelve ‘months’. Thus
our hierarchical model will need to yield parameter pairs, ;, &, ;) for m = 1,...,12 and
j=1,...,12, wherem and; are indices of season and site respectively. It is also saces
to allow the threshold used for excesses modelled by the GPD to vary, since differéaria
about what constitutes an extreme value will be in play f@heambination of season and site.
We will denote byu,, ; the value of the exceedance threshold for maontand site;.

Temporal dependence

To account for the presence of temporal dependence witlimg2ason and site, we now adopt
approach 3 outlined in Section 2.1.3; specifically, we usariate extreme value theory dis-
cussed in Part 4 of this short course to formulate a simple-Girder Markov chain structure
for successive extreme wind speeds. As with fitting to akkshold exceedances and then ad-
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justing the inferences accordingly (as we recommended thighNewlyn sea—surge data in
Section 2.1.4), this approach avoids the need to arbitraténtify clusters of extremes and
filter out a set of independent extreme values (thus disegnaiany precious extremes!), but
also quantifies the extent of extremal dependence at eachRit simply, at each site, the lo-
gistic model with parametex; (discussed in Part 4) is used to model each successive pair of
threshold exceedances (say, (v;+1)) at sitej. The parameter; € (0, 1] measures the strength
of dependence between consecutive extremes, smallersvaldieating stronger dependence.
Independence and complete dependence are obtainedayhenl anda; X\, 0 respectively.
Following work in Fawcett (2005), which suggests that theas@&lependence in extremes is
fairly constant across all seasons, we assume that the Mahieon model describes the depen-
dence over all seasons at sjte

Threshold stability property

In order to ensure a threshold stability property in our nt@dee uses,, ; = o — &m,jUm,;

in place of the usual scale parameter;. With this parameterisation, X — vy, ;) is dis-
tributed GPDg,,, ;, &), then for all valuesu,, ; > wu;, ;, we have that X' — u,, ;) is also
GPD@ ., &m,;) distributed (e.g. see Coles (2001)). This is useful hezeabse it allows com-
parisons of the GPD scale and shape parameters across seasbasites. It also allows us
to specify prior information for both parameters withouving to worry about the additional
complications that would arise for parameters which weresthold dependent.

The model
We then specify the following random effects model for oureme wind speeds:

0g(Gm;) = A"+,

g = W+ and

o= )
a] = €&

where, generically;y and e represent seasonal and site effects respectively. We wihk w
log(é.,, ;) for computational convenience, and to retain the posytivit the scale parameter
am.;- All random effects for log,, ;) and¢,, ; are taken to be normally and independently
distributed:

(M~ No(0,7;)  and (19)
B~ No(0,7), m=1,...,12, (20)

for the seasonal effects, and

Eg) ~ No(&&,C&) and
e) ~ Nolag, ),  j=1,...,12,

for the site effects, wher&(n, p) is the normal distribution with meapandprecisiony (used
for notational convenience). We choose the mean of the dadis@ibution of the seasonal
effects to be fixed at zero in (19) and (20) in order to avoid-gparameterisation and problems
of model identifiability, although we could equally well leafrxed the mean for the distribution
of the site effects to achieve this. In the absence of any prior knowdeslgputr;, we set the

prior by specifying
V)~ U(0,1).

(%
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The final layer of the model is the specification of prior dsitions for the random effect
distribution parameters. Here we adopt conjugacy whergessible to simplify computations,

specifying:

as ~ No(bs, cs), ag ~ No(be, ce);
T ~ Ga(d&, 65), Te ~~ Ga(dg, 65);
G~ Ga(fs,95),  Ce~ Galfe, ge);

subject to the choice of arguments for these functionstheehyper—parameters which deter-
mine the precise Normal and Gamma distributions.

MCMC algorithm

We use a hybrid scheme (see Section 5.2.3) — specificallyrtyetis with Gibbs’ — to sample
form the posteriors. This means we update each compongty sising a Gibbs sampler where
the conjugacy allows straightforward sampling from thédohditionals, and a Metropolis step
elsewhere.

Some results

Some results are shown in Figures 23-26 and in Table 5. The po@nts to notice are listed
below:

— Advantage of the hierarchical model over a standard lika&ld—based analysis: a reduc
tion in sampling variation (posterior standard deviationghe bottom portion of Table
5 are substantially smaller than the corresponding stanelaors) due to the pooling of
information across sites and seasons

— Figure 25 further highlights this reduction in varialylit notice theshrinkagan estimates
of the GPD shape parametein the Bayesian analysis relative to the standard likeliroo
based analysis

— Separate seasonal parameters are recombined for eadb sit¢ain site—by—site esti-
mates of return levels (see Figure 25, bottom right); notig estimates of extreme
quantiles using maximum likelihood estimation can be vergtable, whereas the hier-
archical model achieves a greater degree of stability tgirdbe pooling of information
across sites

— Figure 26 shows an extensiongeedictive return levelswvhich cannot be achieved under
the classical approach to inference
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Figure 23: Trace plots of the site effects for (6¢ for each site in the study
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Figure 24: MCMC output for Bradfield in January

Bradfield, January Nottingham, July
Mean (st. dev.MLE (asymp. s.e.) Mean (st. dev.MLE (asymp. s.e.)
{m) 1.891 (0.042) 1.294 (0.042)
7 0.021 (0.018) 0.002 (0.018)
e 0.367 (0.044) —0.121 (0.041)
) ~0.105 (0.020) ~0.059 (0.017)
eij) 0.385 (0.009) 0.300 (0.011)
G 7.267 (0.211)B.149 (0.633) 3.234 (0.0612.914 (0.163)
£mi  —0.084(0.015)-0.102 (0.055) —0.057 (0.013).018 (0.044)
a; 0.385 (0.009)0.368 (0.012) 0.400 (0.011)0.412 (0.020)

Table 5: Bayesian random effects analysis of extreme wiegdp— Bradfield (January) and
Nottingham (July)
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6 R session: Multivariate extremes and Bayesian inference

As before,

you will need to start R, and then attach the libsasmev andevd, and the sup-

plementary R routines we have provided, using the commands:

> library(ismev)
> library(evd)
> source('Rstufflee.r’)

1. In this question we carry out a simple bivariate analysisigigshe block—maxima ap-

proach. The datasetind has 40 rows and 3 columns; the second and third columns

contain annual maximum wind speeds at Albany, New York andféta, Connecticut
(respectively) over the period 1944 to 1983.

(@)

(b)

(©)

Load the data int® using:
> data(wind)
and have a look at it by typing

> wind

The data we want are the annual maxima for Hartford ancadybrespectively,
stored in columns 2 and 3. We extract them using

> hartford<-wind[,2]
> albany<-wind[,3]

and then recombine them into a vector of bivariate annuaimmeaxsing

> blockmax<-cbind(hartford,albany)
We can now fit a bivariate extreme value distribution ggime logistic model:

> fbvevd(blockmax)

since the logistic model is the default. You may like to expent with other mod-
els, e.g.

> fbvevd(blockmax,model="bilog",std.err = FALSE)

although note that this model is too complex to calculatedded errors, hence
the need to switch this facility off (to avoid an error!). Youay like to experiment
with other models.

(d) If we want to produce diagnostic plots we must first creat®bject containing the

fits, e.qg.
> fitl<-fbvevd(blockmax)
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and then run the plots command

> plot.bvevd(fitl)

You may like to think about what these plots are telling usj awestigate how
well different models fit these data.

. The data setvavesurge contains the data on which the bivariate example in Sec-
tion 4.3 was based. The data has 2894 rows and 2 columnssponaing to the
wave height and sea surge in consecutive measurementsatiaewlyn, Cornwall,
between 1971 and 1977.

(@)

(b)

(©)

(d)

Load the data intR using:
> data(wavesurge)
Now separate wave and surge using:

> wave<-wavesurgel[,1]
> surge<-wavesurgel,2]

You can check this has worked by plotting surge againsevight using:

> plot(wave,surge)

At this stage it would be possible to carry out univariategimold—based anal-
yses of each ofvave andsurge separately, and you may like to do this in

your own time. However we will proceed directly to a bivagi@nalysis in the
exercises below.

We will first identify appropriate thresholds for the &rsas. We decide to iden-
tify the empiricalo5% quantile in each margin, and we can do this using:

> guantile(wave,0.95)
> quantile(surge,0.95)
We can now create an appropriate bivariate threshold veetprusing:

> thresh<-c(6.080,0.322)

We are now in a position to fit various bivariate modelsh® bivariate object
wavesurge :

> fbvpot(wavesurge,thresh)

fits the logistic model (the default). Check you understathdfathe output,
including identifying the relevant model parameters.
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(e) Tofit the bilogistic model, use:
> fbvpot(wavesurge,thresh,model="bilog”)

You may like to experiment with other models.

() For any particular model fit, we can explore the model fiigl &arious aspects

of the inference, using the graphical routpiet.bvpot() applied to an ob-
ject generated from a fit. For example, to investigate thedfitbgistic model,
use:

> fitlogistic<-fbvpot(wavesurge,thresh)
> plot.bvpot(fitlogistic)

3. We return to the datasetind containing annual maximum wind speeds at Albany,
New York and Hartford, Connecticut over the period 1944 t83.9T he first column
gives corresponding years. The data set should alreadyReout if you have not
done Question 1 in thiBsession, reload it using:

> data(wind)
Now separate the two sets of wind speeds using

> albany<-wind[,2] and
> hartford<-wind[,3]

The function

> gev.bayes(n,dataset,mustart,sigmastart,xistart,
. errmu,errlogsigma,errxi,sdmu,sdlogsigma,sdxi)

produces (approximate) draws from the posterior distidout (1, o, ¢|y), where
u, o and¢ are the location, scale and shape parameters of the GEYbdt&in and
y = (y1,99,...,Yys0) are the annual wind speed maxima in years 1944, 1945,
1983. This routine uses Metropolis—Hastings sampling witandom walk update
scheme for each of the parameters. As in the notes, indepeNdemal priors are
used fory, log(o) and¢.

The arguments in the function are defined as follows:
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n The number of iterations in the Metropolis—Hastings sample
dataset A single vector containing the data

mustart The starting value fop in the chain

sigmastart The starting value fos in the chain

xistart The starting value fof in the chain

errmu The random walk innovation variance for

errlogsigma The random walk innovation variance for leg

errxi The random walk innovation variance r

sdmu The Normal distribution prior standard deviation for
sdlogsigma The Normal distribution prior standard deviation for (eg
sdxi The Normal distribution prior standard deviation for

(&) Run the Metropolis—Hastings sampler for the wind speaglima observed at

(b)

(©)

Albany, NY, for 10,000 iterations, using
— (9, 0@ £©) = (20,15,0.1);
— Uy = Ulgg(e) = V¢ = 0.1
— Large Normal prior standard deviations fgrog(c) and¢ — 10000, 10000,
100 (respectively).
Make sure you store your results somewhere, e.g. use

> mcmc.resultsl<-gev.bayes( ...

and ignore thevarning message that R returns. Thermmc.resultsl

will store the 10,000 draws from the posteriorsioflog(c) and¢, as well as
the corresponding acceptance probabilities — these candessed by typing,
for example,

> mcmc.results1$mu
Now examine your output using

par(mfrow=c(3,1))
plot(ts(mcmc.results1$mu))
plot(ts(mcmc.results1$logsigma))
plot(ts(mcmc.results1$xi))

V V V V

(You may want to edit the labels for the axes as we did in PafttBi® course,
using, for examplexlab="iteration’ .) Do you think your sampler is
performing well? Does it converge? If so, what is the "bum-period?

Remember, an overall acceptance probability for eachnpeter of between
30%—-50% is usually good enough. Look at your acceptanceapititioes for .,
log(o) and¢ by typing, for example

> mean(mcmc.resultsl$aprobmu)

Do you think your sampler is performing well?
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(d)

(€)

(f)

(9)

(h)

Now run the sampler again (maybe store your result®@mc.results2 )
but choose more appropriate starting values based on yotsriplpart (b) and
change the variances of your random walk innovations if s&aey (if you in-
creaseerrmu , errlogsigma  orerrxi  the corresponding acceptance prob-
abilities will decrease). Examine your output as you didant (b) and (c) and
check for improvement.

Once you are satisfied with your MCMC, you should sumneayur posteri-
ors (after the removal of burn—in). Typing

> mu.burn<-mcmc.results2$mu[2000:10000]

would, for example, discard the first 2000 iterations asribur’ and store the
remainder of the posterior draws fprin the vectormu.burn . After identify-
ing an appropriate burn—in period fgour MCMC output, use commands simi-
lar to that above to obtain vectors containing posteriowsri®r ., log(c) and¢
after the removal of burn—in (and store themmu.burn , logsigma.burn
andxi.burn ).

We will now look at the posterior densities of our MCMC drsfor i, o andé.
Type

> par(mfrow=c(2,2))

> plot(density(mu.burn))

> plot(density(exp(logsigma.burn)))
> plot(density(xi.burn))

to produce density plots of the posterior draws for the patars;, ¢ and
¢ (note the transformation back toby exponentiation of the log{ vector).

Find the posterior mean and standard deviation for eatfedahree GEV pa-
rameters by typing, for example,

> mean(mu.burn) and
> sd(mu.burn)

Now we can obtain the posterior distribution for, sag 1000—year return level
by using the functiomet.level.gev on each of the draws far, o and¢.
We can do this by typing:

retlevel<-vector(‘numeric’, length(mu.burn))
for(i in 1:length(retlevel))

{

retlevel[i]<-ret.level.gev(mu.burnli],

... exp(logsigma.burn([i]),xi.burn[i],1000)

+}

>
>
+
+

Now typing

plot(density(retlevel))
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will add a density plot of the posterior for the 1000—yeauretlevel to your
panel of plots produced in part (f). Numerical summaries lsarobtained in
a similar fashion to (g), though owing to the (often) sevesgnametry of the
posterior surface for return levels, you may want to mslian() and not
mean() as a summary of posterior location here.

(i) Now find maximum likelihood estimates far, o, £ and the 1000—year return
level (see Part 3) and compare these with the results fromBayesian analy-
sis (compare m.l.e.s with posterior means, for examplegatichated standard
errors with posterior standard deviations).

() If you have time, and are interested in this stuff, youldoe-run this type of
analysis on the Hartford data.
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