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1 Classical models and threshold models

1.1 Introduction

Statistical modelling of extreme weather has a very practical motivation: reliability — anything
we build needs to have a good chance of surviving the weather/environment for the whole of
its working life. This has obvious implications for civil engineers and planners. They need to
know:

• how strong to make buildings;

• how high to build sea walls;

• how tall to build reservoir dams;

• how much fuel to stockpile;

etc.

This motivates the need to estimate what the:

• strongest wind;

• highest tide;

• heaviest rainfall;

• most severe cold-spell;

etc. will be over some fixed period of future time. The only sensible way to do this is to use
data on the variable of interest (wind, rain etc.) and fit an appropriate statistical model. The
models themselves are motivated by asymptotic theory, and this is our starting point.

1.2 Classical models

Extreme value modelling has a central theoretical result, analogous to the Central Limit The-
orem. SupposeX1, X2, . . . , is an independent and identically distributed sequence of random
variables. Define

Mn = max{X1, . . . , Xn}.

We are interested in the limiting distribution ofMn asn → ∞. As with the mean,X̄, of
{X1, . . . , Xn}, the limiting distribution ofMn asn → ∞ is degenerate, and we need to work
with a normalised version.

1.2.1 The Extremal Types Theorem (Fisher and Tippett, 1928)

If there exist sequences of constants{an > 0} and{bn} such that

Pr{(Mn − bn)/an ≤ z} → G(z) as n→ ∞,
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whereG is a non–degenerate distribution function, thenG belongs to one of the following
families:

I : G(z) = exp

{

− exp

[

−

(

z − β

γ

)]}

, −∞ < z <∞;

II : G(z) = exp

{

−

(

z − β

γ

)

−α
}

, z > β; [G(z) = 0, z ≤ β];

III : G(z) = exp

{

−

[

−

(

z − β

γ

)α]}

, z < β; [G(z) = 1, z ≥ β],

for parametersγ > 0, β, andα > 0.

1.2.2 The Generalised Extreme Value Distribution (GEV)

Families I, II and III are widely referred to as Gumbel, Frechet and Weibull (or Extreme Value
Types I, II and III) respectively.

Fortunately they can be combined into a single family, knownas the Generalised Extreme Value
Distribution (GEV), with c.d.f.

G(z) = exp

{

−

[

1 + ξ

(

z − µ

σ

)]

−1/ξ
}

, (1)

defined on the set{z : 1 + ξ(z − µ)/σ > 0}, and whereµ, σ > 0 andξ arelocation, scaleand
shapeparameters respectively.

Note that the Extreme Value Types I, II and III correspond to the casesξ = 0, ξ > 0 andξ < 0
respectively.

For Type I, we need to take the limiting form of Equation (1) asξ → 0, which gives

G(z) = exp

{

− exp

[

−

(

z − µ

σ

)]}

, (2)

defined for allz.

So the Extremal Types Theorem can be restated with (1) as the limiting form, and this provides
the basis for our first modelling approach.

Approach 1: “Block maxima”

Break up our sequenceX1, X2, . . . into blocks of sizen (with n reasonably large), and extract
only the maximum observation from each block.

Now fit Model (1) to the sequence of extracted maximaM(1),M(2), . . . ,M(N) and use this as the
basis for statistical inference. The most common implementation of this approach for weather
data is to take our block size to be one year. This rough and ready approach has shown itself to
be surprisingly robust!
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1.2.3 Example: Annual maximum rainfall

Consider the annual maxima of daily rainfall accumulations(mm) at a location in SW England,
from 1914 to 1961.
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Figure 1: Annual maxima of daily rainfall totals at a location in South West England

1.2.4 Inferences for the block maxima approach

Here our blocks haven = 365, which is reasonably large, so we fit Model (1) to theN = 48
annual maxima (e.g. usingmaximum likelihood estimation). We obtain fitted parameter values
(standard errors in parentheses):

µ = 40.7(1.5) σ = 9.4(1.2) ξ = 0.14(0.12).

More importantly, we can make inferences on the quantities most useful to practitioners . . . .
For example, the 99th percentile in the distribution of annual maxima is known as the100 year
return level. The fitted value of this is easily obtained on inversion of Model (1):

q100 = 101.3(18.9).

1.2.5 Remarks about the block maxima approach

• We don’t need to deal explicitly with normalisation constants. We don’t even need to
known!

• The assumption ofn independent and identically distributed variables in eachblock is
cavalier, but inferences are surprisingly robust.

• The inferences on return levels are crucial for designers and engineers, to the extent they
are built into legally binding codes of practice.
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• In actual fact, the existing codes of practice are usually based on a very primitive version
of the methods just described. Fits are often based on restricting to one of the Fisher–
Tippett types, ignoring estimation uncertainty, and usinganad hocinterpolation of return
levels across a network of sites.

• In any case the block–maxima approach is oftenvery wasteful of data, leading to large
uncertainties on return level estimates. This motivates a different approach . . . ...

1.2.6 Diagnostics for the block maxima approach

The goodness–of–fit of the GEV model is most easily assessed using various diagnostic plots.
Here we consider four plots:

1. Probability plot: the fitted value of the c.d.f. is plotted against the empirical value of the
c.d.f. for each data point.

2. Quantile plot: the empirical quantile is plotted against the fitted quantile for each data
point.

3. Return level plot: the return level (with error bars) is plotted against the return period.
Each data point defines a sample point.

4. Density plot: the fitted p.d.f. is superimposed on a histogram of the data.

For our rainfall example, the diagnostic plots look like this . . .
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Figure 2: Diagnostic plots for GEV fit to rainfall annual maxima
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1.2.7 Confidence intervals for return levels

Although we could construct a symmetrical confidence interval for ther–year return–level us-
ing classical likelihood theory (̂qr ± 1.96 × standard error), this is not recommended. This
practice assumes the limiting quadratic behaviour of the likelihood surface near the maximum,
whereas in fact the surface is usually very asymmetrical.

We recommend using the method ofprofile likelihoodto take this into account: by reparameter-
isation of Equation (1) to replace one of the parameters byqr, we can maximise the likelihood
conditionalon qr taking each possible value. We plot this constrained value againstqr . . .

1.2.8 Profile likelihood confidence interval forq100

For the rainfall example we get:
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Figure 3: Profile log-likelihood for 100 year return level

The likelihood–ratio test can be applied directly to this likelihood surface by using a cut–off
equal to0.5 × χ2

1(.). Here we see that the95% confidence interval is approximately (78,176).

1.3 Threshold methods

Threshold methods use a more natural way of determining whether an observation is extreme -
all values greater than some high value (threshold) are considered. This allows more efficient
use of data, but brings its own problems. We must first go back and consider the asymptotic
theory appropriate for this new situation.

1.3.1 The Generalised Pareto Distribution (GPD)

The appropriate limit theorem can be stated as follows:
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Under very broad conditions, if it exists, any limiting distribution asu→ ∞ of (X−u|X > u)
is of Generalised Pareto Distribution (GPD) form (settingY = X − u):

H(y) = 1 −

(

1 +
ξy

σ

)

−1/ξ

+

, (3)

wherea+ = max(0, a) andσ (σ > 0) andξ (−∞ < ξ < ∞) are scale and shape parameters
respectively. Once again the GPD exists forξ = 0, and is given by taking the limit of (3) as
ξ → 0. This time we get

H(y) = 1 − exp

(

−y

σ

)

, (4)

defined fory > 0. This shows that whenξ = 0, the GPD is in fact the Exponential Distribution
with mean equal to the scale parameterσ (σ > 0).

1.3.2 Return levels for the threshold excesses approach

If the GPD is a suitable model for exceedances of a thresholdu by a random variableX, then
for x > u,

Pr{X > x|X > u} =

[

1 + ξ

(

x− u

σ

)]

−1/ξ

.

It follows that

Pr{X > x} = λu

[

1 + ξ

(

x− u

σ

)]

−1/ξ

. (5)

whereλu = Pr{X > u}. So the levelxm that is exceeded once everym observations is the
solution of

λu

[

1 + ξ

(

x− u

σ

)]

−1/ξ

=
1

m
.

Rearranging this we obtain

xm = u+
σ

ξ
[(mλu)

ξ − 1],

so long asm is large enough to ensure thatxm > u. Now if there areny observations per year,
then by settingm = N × ny, theN–year return level is obtained as

zN = µ+
σ

ξ
[(Nnyλu)

ξ − 1] (6)

or whenξ = 0,
zN = u+ σ log(Nnyλu),

and standard errors can be obtained using the delta method.

Approach 2: “Exceedances over thresholds”

In practice, modelling might typically proceed as follows:

1. Choose some thresholdu0 which is high enough so that the GPD (3) is a good model for
(X − u0|X > u0).

2. Fit the GPD to the observed excessesx− u0.

3. Use the fitted GPD, together with some model for the rate of exceedancesX > u0, to
provide estimates forreturn levelsusing (6).

7



1.3.3 Example: daily rainfall totals

For the rainfall data we used before, now consider the daily totals themselves.

Daily Rainfall at a location in SW England (1914−1961)

1920 1930 1940 1950 1960

D
ai

ly
R

ai
nf

al
l(

m
m

)

Year

0
20

40
60

80

Figure 4: Daily Rainfall (1914-1961)

1.3.4 Threshold choice: Mean residual life plot

We make use of the fact that if the GPD is the correct model for all the exceedancesxi above
some high thresholdu0, then themean excess, i.e. the mean value of(xi − u), plotted against
u > u0, should give a linear plot (Davison and Smith, 1990) [BecauseE[Xi − u0] is a linear
function ofu : u > u0]. By producing such a plot for values ofu starting at zero, we can select
reasonable candidate values foru0.
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Figure 5: Mean residual life plot for daily rainfall
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1.3.5 Inferences for the rainfall threshold excesses

Model (3) turns out to work reasonably well for all the excesses aboveu0 = 30mm. This gives
152 exceedancesxi; i = 1, . . . , 152, and Model (3) is fitted to the values(xi − u), again using
maximum likelihood. We get

σ = 7.44(0.96) ξ = 0.18(0.10).

Assuming a uniform rate of exceedances, we estimate the 100–year return level:q100 = 106.3(20.8).

1.3.6 Diagnostics for the rainfall threshold excesses
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Figure 6: Diagnostic plots for the the threshold exceedancemodel for rainfall

1.3.7 Profile likelihood confidence interval forq100

From the graph below, the95% confidence interval is approximately (81,184).
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Figure 7: Profile log–likelihood forq100 based on threshold excess model
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1.3.8 Threshold choice revisited

If the GPD with shape parameterξ and scale parameterσu0 is the correct model for excesses
overu0, then for any thresholdu > u0, the excesses will be GPD with shape parameterξ, and
scale parameter

σu = σu0 + ξ(u− u0).

If we now use a modified version of the scale parameter,

σ∗ = σu − ξu,

we can see that bothσ∗ andξ should be constant over thresholds greater thanu0 if we model
excessesxi − u for u > u0 using the GPD. This provides us with a further tool for assessing
our original choice of thresholdu0.

1.3.9 Parameter stability plots

We refit the GPD for a range of thresholds upwards ofu0, and investigate the stability of our
estimates ofξ andσ∗. 95% confidence intervals are shown by vertical lines, and help usassess
the significance of any variation we see.
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Figure 8: Parameter stability plots for the threshold modelfor rainfall

We can be reassured about our original choice ofu0 = 30!
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2 Dependence and non–stationarity

The asymptotic results introduced in Part 1 have assumed theunderlying process to be indepen-
dent and identically distributed (i.i.d.). They also assume this process is stationary. In practice,
extreme value data – particularly environmental time series – exhibit some form of departure
from this ideal. The most common forms are:

— Local temporal dependence, where successive values of thetime series are dependent, but
values farther apart are independent (to a good approximation);

— Long term trends, where the underlying distribution changes gradually over time;

— Seasonal variation, where the underlying distribution changes periodically through time.

These departures can be handled through a combination of extending both the theory and the
modelling. However, although a wide range of theoretical models for non–stationarity have
been studied, only in a few cases have these been used for statistical modelling; the results
have generally been too specific to be of use in modelling datafor which the form of non–
stationarity is unknown. Over the last decade or so, it has been more usual for practitioners to
employ statistical procedures which allow the existing results to be applied. In Part 2, we will
consider some of these in detail.

2.1 Extremes of dependent sequences

For the types of data to which extreme value models are commonly applied, temporal indepen-
dence is usually an unrealistic assumption. In particular,extreme conditions often persist over
several consecutive observations, bringing into questionthe appropriateness of models such as
the GEV. A detailed investigation of this requires mathematical treatment at a level of sophis-
tication beyond which we have time to capitulate in this short course; however, the general
ideas are not difficult and the main result offers a simple, practical, interpretation. For the re-
mainder of this section on dependent sequences, we shall assume that our process isstationary,
corresponding to a series whose variables may be mutually dependent, but whose stochastic
properties are homogeneous throughout time.

Dependence in stationary sequences can take many differentforms. With practical applications
in mind, it is common to assume a condition that limits the extent of dependence to short–
range temporal dependence so that, for example, eventsXi andXj, both of which are extreme,
are independent provided time pointsi and j are far enough apart. Indeed, many stationary
sequences satisfy this property. By excluding the possibility of long–range dependence in this
way, we focus our attention on dependence at a much shorter range. Effects of such short–range
dependence, it turns out, can be quantified within the standard extreme value limits discussed
in Part 1.

2.1.1 Maxima of stationary sequences

The book by Leadbetteret al. (1983) considers, in great detail, properties of extremes of depen-
dent processes. A key result often used is ‘Leadbetter’sD(un) condition’, which ensures that
long–range dependence is sufficiently weak so as not to affect the asymptotics of an extreme
value analysis. This condition is stated more formally in the Definition below.
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Definition (Leadbetter’s D(un) condition)
A stationary seriesX1, X2, . . . is said to satisfy theD(un) condition if, for all i1 < . . . < ip <
j1 < . . . < jq with j1 − ip > l,






Pr
{

Xi1 ≤ un, . . . , Xip ≤ un, Xj1 ≤ un, . . . , Xjq ≤ un

}

−Pr
{

Xi1 ≤ un, . . . , Xip ≤ un

}

Pr
{

Xj1 ≤ un, . . . , Xjq ≤ un

}






≤ α(n, l), (7)

whereα(n, l) → 0 for some sequenceln such thatln/n→ 0 asn→ ∞.

For sequences of independent variables, the difference in probabilities in the above expression
is exactly zero foranysequenceun. More generally, we will require that theD(un) condition
holds only for a specific sequence of thresholdsun that increases withn. For such a sequence,
theD(un) condition ensures that, for sets of variables that are far enough apart, the difference
in probabilities expressed in (7), while not zero, is sufficiently close to zero to have no effect on
the limit laws for extremes.

Theorem
Let X̃1, X̃2, . . . be a stationary series satisfying Leadbetter’sD(un) condition, and letM̃n =
max{X̃1, . . . , X̃n}. Now letX1, X2, . . . be anindependentseries withX having the same dis-
tribution asX̃, and letMn = max{X1, . . . , Xn}. Then ifMn has a non–degenerate limit law
given by Pr{(Mn − bn)/an ≤ x} → G(x), it follows that

Pr
{

(M̃n − bn)/an ≤ x
}

→ Gθ(x) (8)

for some0 ≤ θ ≤ 1.

The parameterθ is known as theextremal index, and quantifies the extent of extremal de-
pendence:θ = 1 for a completely independent process, andθ → 0 with increasing levels
of (extremal) dependence. SinceG in the above theorem is necessarily an extreme value distri-
bution, and due to themax–stabilityproperty (see Leadbetteret al., 1983), then the distribution
of maxima in processes displaying short–range temporal dependence (characterised by the ex-
tremal indexθ) is also a GEV distribution; the powering of the limit distribution by θ only
affects the location and scale parameters of this distribution.

The above theorem implies that if maxima of a stationary series converge – which, from Part 1,
we know they will do – then, provided an appropriateD(un) condition is satisfied, the limit dis-
tribution is related to the limit distribution of an independent series. The effect of dependence,
as seen in expression (8), is just a replacement ofG as the limit distribution withGθ. In fact, if
G corresponds to the GEV distribution with parameters(µ, σ, ξ), then

Gθ(z) = exp

{

−

[

1 + ξ

(

z − µ

σ

)]

−1/ξ
}θ

= exp

{

−

[

1 + ξ

(

z − µ∗

σ∗

)]

−1/ξ
}

,

whereµ∗ = µ − σ
ξ

(

1 − θ−ξ
)

andσ∗ = σθξ. Thus, if the (approximate) distribution ofMn is

GEV with parameters(µ, σ, ξ), then the (approximate) distribution of̃Mn is GEV with param-
eters(µ∗, σ∗, ξ).
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2.1.2 Modelling block maxima

Provided long–range dependence is weak, we can proceed to model block maxima from series
with short–range extremal dependence as outlined in Part 1,since the distribution of block
maxima falls within the same family of distributions as would be appropriate if the series were
truly independent. This is fantastic news! Short–range temporal dependence is a much more
plausible assumption than complete independence, and our modelling approach is still valid!
However, the main difference – excluding the change in parameters from(µ, σ, ξ) to (µ∗, σ∗, ξ)
– is that our impliedn (the number we are taking the maxima over) is now effectivelyreduced
due to the dependence, so convergence of maxima to the limit distribution will be slower. And
shouldn’t we be using threshold methods anyway, which use information onall extremes and
not just those that are the maximum within their block?

2.1.3 Modelling threshold exceedances

Though the modelling procedure for fitting the GEV to a set of annual maxima is unchanged for
series which display short–term temporal dependence, somerevision is needed of the threshold
exceedance approach. If all threshold exceedances are usedin our analysis, and the GPD fitted
to the set of threshold excesses, the likelihoods we use willbe incorrect since they assume
independence of sample observations. In practice, severaltechniques have been developed to
circumvent this problem, including:

1. filtering out an (approximately) independent set of threshold exceedances

2. fitting the GPD toall exceedances, ignoring dependence, but then appropriatelyadjusting
the inference to take into account the reduction in information

3. Explicitly modelling the temporal dependence in the process

Though the first approach above is by far the most widely–used, our research has focussed on
the relative merits of the other two approaches. The third approach makes use of multivariate
extreme value theory, and so we shall re–visit this idea in more detail in Parts 4 and 5 this
afternoon. For now, let us consider the first two approaches,which we will call removing
dependence andignoringdependence, respectively.

2.1.4 Example: Cluster peaks or all excesses?

Figure 9 shows a series of 3–hourly measurements of sea–surge heights at Newlyn, a coastal
town in the southwest of England, collected over a three yearperiod. The sea–surge is the me-
teorologically induced non–tidal component of the still–water level of the sea. The practical
motivation for the study of such data is that structural failure — probably a sea–wall in this case
— is likely under the condition of extreme surges. Also shownin Figure 9 is a plot of the time
series against the lag 1 time series.

A natural way of modelling extremes such time series is to usethe Generalised Pareto Dis-
tribution (GPD) as a model for excesses over a high threshold. As already discussed in Part
1, this approach might be preferable to the block maxima approach which is highly wasteful
of data (and precious extremes!). Figure 9 also shows the presence of substantial temporal de-
pendence in the sequence of three–hourly surges. We will nowconsider approaches1 and2,
outlined above, to circumvent this problem.
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Figure 9: Newlyn sea–surge data: (a) Time series plot; (b) histogram; (c) plot of the time series
against the series at lag 1.

‘Removing’ dependence
The most commonly adopted approach to circumvent the problems caused by such temporal
dependence is to employ a declustering scheme to filter out a set of approximately independent
threshold excesses. One method, which is often considered to be the most ‘natural’ way of
identifying ‘clusters’ of extremes, is ‘runs–declustering’. This is how it works:

1. Choose an auxiliary ‘declustering parameter’ (which we call κ)

2. A cluster of threshold excesses is then deemed to have terminated as soon as at leastκ
consecutive observations fall below the threshold

3. Go through the entire series identifying clusters in this way

4. The maximum (or ‘peak’) observation from each cluster is then extracted, and the GPD
fitted to the set of cluster peak excesses.
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This approach is often referred to as thepeaks over thresholdapproach (POT, Davison and
Smith, 1990) and is widely accepted as the main pragmatic approach for dealing with clustered
extremes. Although this approach is quite easy to implement, there are issues surrounding the
choice ofκ; if

• κ is too small, the cluster peaks will not be far enough apart tosafely assume indepen-
dence

• κ is too large, there will be too few cluster exceedances on which to form our inference

It has also been shown that parameter estimates can be sensitive to the choice ofκ. In this
example, we use a separation interval of 60 hours (and soκ = 20) following the example of
Coles and Tawn (1991), which should be large enough to safelyassume independence between
successively identified clusters allowing for wave propagation time. We used a mean residual
life plot (see Part 1) to identify a suitably high threshold (0.3m).

The table below shows maximum likelihood estimates of the GPD scale and shape parame-
tersσ andξ, along with the associated 95% confidence intervals, fitted to the set of cluster peak
excesses usingκ = 20. Shown for comparison are the corresponding estimates using all thresh-
old exceedances, ignoring temporal dependence. Note the discrepancy in the estimation of the
two parameters under the two approaches; however, when allowing for sampling variability,
these differences are not significant.

σ̂ ξ̂
Cluster peaks 0.187 –0.259

95% confidence interval (0.109, 0.265) (–0.545, 0.027)
All excesses 0.104 –0.090

95% confidence interval (0.084, 0.125) (–0.215, 0.035)

Table 1: Maximum likelihood estimates, and associated 95% confidence intervals, for the GPD
scale and shape parameters

‘Ignoring’ dependence
Table 1 above shows that, although there is a slight discrepancy in parameter estimation when
using (i) cluster peak exceedances and (ii)all exceedances, these discrepancies are non–significant.
Therefore, why bother declustering? Surely we’re better off usingall excesses?

The confidence intervals for the estimates using all excesses are too narrow – fitting to all
exceedances when there is clearly evidence of short–term temporal dependence will result in
underestimated standard errors. Smith (1991) suggests a procedure in which the usual asymp-
totic likelihood calculations are supplemented by empirical information on dependence, in order
to produce a modified covariance matrix for the parameters, which is approximately correct af-
ter the dependence has been taken into account.

Under the model fitting procedure which assumes independence, denote the observed infor-
mation matrix byH. If independence were a valid assumption, then the covariance matrix of
the maximum likelihood estimates (m.l.e.s) would be approximatelyH−1. Smith (1991) shows
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that to account for dependence this approximation should bereplaced byH−1V H−1, whereV
is the covariance matrix of the likelihood gradient vector.Furthermore,V can be estimated by
decomposing the log–likelihood sum into its contributionsby year (which should be indepen-
dent up to a good approximation) and obtaining the appropriate covariance matrix empirically.

Similar arguments can be applied to modify the procedure fortesting hypotheses. Specifically,
denoting model parameters byψ = (ρ, ζ) whereρ andζ are of dimensionsp andq respectively,
suppose that a test ofH0 : ρ = ρ0 againstH1 : ρ 6= ρ0 is required,ζ being a nuisance parameter.
Assuming independence, test procedures are usually based on the asymptotic distribution of

2{ℓ(ψ̂1) − ℓ(ψ̂0)}, (9)

which isχ2
p. Here,ℓ(ψ̂0) andℓ(ψ̂1) denote the log–likelihood evaluated at the maximum like-

lihood estimate underH0 andH1 (respectively). Now suppose we wish to account for depen-
dence. Partitioning

H =

(

H11 H12

H21 H22

)

,

whereH11,H12,H21 andH22 are the appropriate sub–matrices of dimensionsp×p, p×q, q×p
andq × q respectively, then we partition the inverse ofH as

H−1 =

(

H11 H12

H21 H22

)

,

where each sub–matrixH ·· has the same dimensions asH··. Now let

C =

(

H11 H12

H21 H22 −H−1
22

)

.

Then Smith (1991) shows that the approximate distribution of expression (9) is given by

p
∑

i=1

λiz
2
i (10)

where thezi, i = 1, . . . , p, are standard normal variates and theλi are the non–zero eigenvalues
of V 1/2CV 1/2. This replaces the usualχ2

p–distribution, which is valid in the case of indepen-
dence, and which would be recovered if all theλi were set equal to 1. It is then easy to simulate
from the modified distribution (10) to estimate any requiredquantile of the test statistic. Profile
likelihood confidence intervals then arise as the set of values ofψ̂1 such that the test statistic (9)
is smaller than the quantile which represents the desired level of significance.

Table 2 reports maximum likelihood estimates for the GPD scale and shape parameters, along
with their 95% confidence intervals, for analyses usingall excessesand justcluster peak ex-
cesses(as before); in the analysis using information on all extremes, though, standard errors
have now been inflated to account for temporal dependence viaSmith’s method (1991).

Table 3 shows maximum likelihood estimates for return levels for four return periods —s = 10,
50, 200 and1000 years. The corresponding 95% confidence intervals have beenobtained using
the method of profile likelihood, where the appropriate cut–off for the test statistic (9) has been
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obtained using the modified distribution (10). In this way the profile likelihood confidence in-
tervals have been inflated to account for the dependence in a way which is consistent with the
modifications proposed by Smith (1991). Figure 10 shows a plot of the profile likelihood for
one of these return levels —z50 — illustrating the severe asymmetry which is commonly ob-
served for return levels. This plot is for the analysis usingall threshold exceedances. The 95%
profile likelihood confidence interval forz50, after adjusting for dependence, is identified on the
plot. Also shown is the much narrower interval which would have been obtained if dependence
had been ignored.

Table 2 shows that, when the analysis is restricted to a set ofcluster peak exceedances, the
GPD scale parameterσ is overestimated, and the shape parameterξ underestimated, relative to
the approach which uses all exceedances. However, when we account for sampling variability,
we see that these differences are not significant.

Of greater practical interest are the estimated return levels. Table 3 shows that estimates barely
differ for the ten year return period, but are consistently smaller in the cluster peaks analysis for
the other three periods studied — in fact, quite substantially so for the 200 and 1000 year return
periods. Since estimates of such long–range return levels are often used as a design requirement
in oceanographic situations (e.g. for the height of sea walls), designing to a level specified by
an analysis based on cluster peak excesses could result in substantial under–protection.

σ̂ ξ̂
Cluster peaks 0.187 –0.259

95% Confidence Interval (0.109, 0.265) (–0.545, 0.027)
All excesses 0.104 –0.090

95% Confidence Interval (0.082, 0.126) (–0.217, 0.037)

Table 2: Maximum likelihood estimates, and associated Wald95% confidence intervals, for the
GPD scale and shape parameters and the threshold exceedancerate when using all excesses,
and just cluster peak excesses.

ẑ10 ẑ50 ẑ200 ẑ1000
Cluster peaks 0.868 0.920 0.951 0.975

95% Confidence Interval (0.770, 1.031) (0.813, 1.099) (0.838, 1.008) (0.858, 1.063)
All excesses 0.867 0.947 1.007 1.068

95% Confidence Interval (0.736, 1.067) (0.790, 1.193) (0.844, 1.257) (0.891, 1.335)

Table 3: Maximum likelihood estimates, and associated 95% profile likelihood confidence in-
tervals, for four return levels (units are in metres).
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Profile log–likelihood for the 50–year return level
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Figure 10: Profile log–likelihood surface, with corresponding 95% confidence intervals, for the
50 year return level̂z50. The dashed lines show the construction of the interval which has been
inflated to account for temporal dependence in the sea–surgedata (since in this example all
threshold excesses were used). The dotted lines show how theinterval would be constructed if
dependence had been ignored.

Simulation study
So we know there are differences – some significant – in returnlevel estimation when we use
(i) cluster peak excesses and (ii) all threshold excesses. Which approach are we to trust?

— The usual approach is to use cluster peaks, then we have effectively removed temporal
dependence

— However, return levels using this approach are underestimated relative to the procedure
which uses all threshold excesses

— Using cluster peak excesses could result in substantial under–protection (i.e. not building
a sea–wall high enough to protect against the 1 in 1000 year surge)

Figure 11 below shows some results of a simulation study undertaken by Fawcett and Walshaw
(2007), in which the GPD was fitted to a simulated dataset for which the true values ofσ, ξ and
various return levels wereknown, and the strength of temporal dependence was similar to that
of which is often observed in real–life environmental time series. The bold lines correspond
to sampling distributions for the GPD parameters (and two return levels) using all threshold
excesses, the thin lines correspond to the equivalent when using just cluster peak excesses.
Clearly, for all parameters, the analysis using all threshold excesses outperforms that which
uses just cluster peak excesses. Of most concern are the result shown for the two return levels;
Fawcett and Walshaw (2007) found systematic underestimation of return levels when using
cluster peak excesses (remember, this is the approach most commonly adopted to circumvent
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the problem of temporal dependence), whereas estimates of these return levels were much more
accurate under the approach using all threshold excesses.
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Figure 11: Sampling distributions of̂σ∗, ξ̂, ẑ50 andẑ200 whenα = 0.2, and using all threshold
excesses (heavy line) and cluster peak excesses (thin line). Thetrue values for each parameter
are shown by the vertical lines.

2.2 Non–stationarity: trend

In Section 2.1 we demonstrated that, subject to specified limitations, the usual extreme value
limit models are still applicable in the presence of short–term temporal dependence. In fact, we
can use the results for block maxima directly as they stand, though some thought is required
when considering threshold models. The general theory cannot be extended for non–stationary
series; instead, it is usual to adopt a pragmatic approach ofusing the standard extreme value
models as basic templates that can be augmented by statistical modelling.

Figure 12 (over-leaf) below shows a time series plot of annual maximum sea levels observed
at Fremantle, Western Australia, between 1900 and 1986; theright–hand–side plot shows these
sea–levels plotted against the annual mean value of theSouthern Oscillation Index(SOI), which
is a proxy for meteorological volatility. There appears to be an increase in annual maximum
sea levels through time, as well as an association between annual maximum sea levels and the
mean SOI.

We can accommodate the time–trend shown in the plot on the left–hand–side of Figure 12 by
fitting the GEV distribution (as we have annual maxima), but allowing for a linear trend in the
underlying level of extreme behaviour. For example, if we defineZt to be the annual maximum
sea level at Fremantle in yeart, then we might use

Zt ∼ GEV (µ(t), σ, ξ)

where

µ(t) = β0 + β1t. (11)
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Figure 12: Time series plot of annual maximum sea levels observed at Fremantle (left), and a
plot of the mean SOI against annual maximum sea level (right).

In this way, variations through time in the observed processare modelled as a linear trend in the
location parameter of the appropriate extreme value model (the GEV in this case). We might
choose to adopt the following model forµ(t):

µ(t) = β0 + β1SOI(t)

to allow for a linear association between the maximum sea level in yeart and the SOI in yeart.
Or perhaps a textitmultiple linear regression model forµ(t), whereby

µ(t) = β0 + β1t+ β2SOI(t); (12)

we can then assess our preferences between the stationary model (µ(t) = β0), the models
which allow for a dependence in time (alone), a dependence onSOI through time (alone), and
the model which allows the underlying extremal behaviour tobe determined bybotha change
in timeandSOI, by referring to the usual likelihood ratio tests (sincethese models are nested).
For example, fitting a stationary GEV distribution to these data, we get:

µ̂ = 1.482(0.017) σ̂ = 0.141(0.011) ξ̂ = −0.217(0.064),

with a maximised log–likelihood of 43.6. Fitting the model which allows for a trend in time
(the model shown in 11), we get:

β̂0 = 1.387(0.027) β̂1 = 0.002(0.0005) σ̂ = 0.124(0.010) ξ̂ = −0.128(0.068)

with a maximised log–likelihood of 49.79. Referring

D = 2 {49.79 − 43.6}

= 12.38

toχ2
1 tables, we have a significant result, suggesting that the model which includes a linear trend

in time forµ explains substantially more of the variation in the data than the stationary model.
Figure 13 shows the time series plot of the Fremantle sea level data with fitted estimates for
µ superimposed. Also shown, for comparison, is the fitted estimate forµ under the stationary
model.
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Figure 13: Time series plot of annual maximum sea levels observed at Fremantle, with fitted
estimates forµ based on the stationary GEV model and the model which allows for a linear
trend in time.

Similar methodology actually suggests that the model in equation 12 is the best model to use
here, i.e. that which allows for a trend inµ depending on both time and SOI. In fact, we get:

β̂0 = 1.389(0.027) β̂1 = 0.002(0.0005) β̂2 = 0.055(0.020)

σ̂ = 0.121(0.010) ξ̂ = −0.154(0.064)

giving

µ̂ = 1.389 + 0.002t+ 0.055SOI(t).

Of course, more exotic model structures can be incorporatedinto this framework, including
quadratic models, higher–order polynomial models, and models which allow for non–normal
error structures. Trend can also be incorporated into the other GEV/GPD model parameters.

2.3 Non–stationarity: seasonality

The most widely adopted technique to deal with data which vary seasonally is to partition the
data into seasons (within which we can assume the data to be homogeneous), and perform a
separate extremal analysis on each season. Examples of suchan approach can be found in
Smith (1989) and Walshaw (1994). These seasons might be, forexample, ‘winter’ and ‘sum-
mer’, or ‘dry’ and ‘wet’, where the seasonal variation is clearly understood. However, for data
which exhibit less defined seasons, we can fit to separate months or years. Disadvantages of
this approach are that a separate set of extremal parametersrequire estimating for each season,
and that recombining these estimates is often non–trivial.To overcome these disadvantages, an-
other approach is to allow the extremal parameters to vary continuously throughout the period
of seasonality – for example, within the year. Fourier formscan be fitted to the parameters, and
a model selected based on likelihood ratio tests. However, Walshaw (1991) suggests that infer-
ences are barely altered in relation to a piecewise seasonality approach (for extreme wind gusts,
anyway), and that the significant increase in computation time incurred by fitting continuously
varying parameters is therefore not worthwhile.
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3 R session: Weather extremes

To get started, you will need to be seated at a computer with R installed, and initiateR, which
is usually done through menus selected from theStart menu, or an icon. In addition the
libraries ismev andevd should be installed. We will connect these, and install someof our
own supplementary routines, using the commands

> library(ismev)
> library(evd)
> source(’Rstufflee.r’)

Provided these all go through without a hitch, we are ready togo!

1. In this question, we will do a simple analysis of annual maximum wind speeds recorded
at Boston, Massachusetts, for 50 years from 1936 to 1985.

(a) Provided you have the fileboston.txt in your working directory, this can be
loaded intoRusing the command:

> boston<-scan(‘boston.txt’)

We have now created an R object calledboston which is a single column con-
taining consecutive years with annual maximum wind speeds inmph. We can have
a look at this by simply typing:

> boston

(b) We now wish to separate out theyear andmaximum components into separate
vectors. This can be done using the commands:

bosyear<-as.numeric(boston[seq(1,length(boston),2)] )
bosmax<-as.numeric(boston[seq(2,length(boston),2)])

which has the effect of creating vectorsbosyear andbosmax containing the years
and maxima respectively. [Note that when entering consecutive similar commands
in R, it is convenient to use the up arrow to bring up the previous command and then
edit it!] We can check the vectors by simply typing:

> bosyear
> bosmax

(c) Now we can have a look at the annual maxima over time using the command:

> plot(bosyear,bosmax)

If you like you can give your plot some nice labels:

> plot(bosyear,bosmax,xlab=’Year’,ylab=’Wind speed (mp h)’,
main=’Annual maximum wind speeds at Boston MA’)
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(d) We are now ready to carry out an extreme value analysis on the annual maxima.
Since these are regarded as observations on i.i.d. random variables, we can forget
about the vectorbosyear . We fit the GEV to the data inbosmax :

>gev.fit(bosmax)

Notice the output:

∗ $conv gives a value of zero (in row [1] of the output), which indicates success-
ful convergence, i.e. no errors in fitting;

∗ $nllh shows the negative (maximised) log–likelihood;
∗ $mle shows the maximum likelihood estimates forµ, σ andξ respectively;
∗ $se gives the associated standard errors for these parameters.

(e) We can investigate the model performance using the in–built diagnostics. First we
must store the relevant information from the fit in an object we name ourselves, e.g.

> fit1<-gev.fit(bosmax) > gev.diag(fit1)

creates the ‘fit’ objectfit1 and then runs the diagnostic routines on the stored
object. Make sure you interpret the four plots in the contextof Section 1.2.6.

(f) We can obtain inference on return levels using the additional command which we
have supplied inRstufflee.R , which is calledgev.ret(data,period) .
This command refits the GEV model, and then provides us with the inference on the
specified return level. E.g. for the100–year levelq100, we would type:

> gev.ret(bosmax,100)

In addition to the information we obtained earlier, we get the 100–year return level
estimate with associated standard error. Notice how this matches up with the return
level plot in the diagnostic plots.

(g) If we want to construct a confidence interval forq100, we are better off using the
method of profile–likelihood as described in Section 1.2.8.We can use the func-
tiongev.prof(fit,period,lower-bound, upper-bound) . This com-
mand is slightly unstable, and relies on an appropriate choice of the bounds for the
profile–likelihood. For the Boston annual maxima, the following works well for the
100–year level:

> gev.prof(fit1,100,75,130)

Note that this enables us to read off the95% confidence interval (the default) for
q100. Suppose we wanted a99% interval we would use:

> gev.prof(fit1,100,<lower>,<upper>,conf=0.99)

for appropriate choices of<lower> and<upper> . You may like to experiment.
Note how asymmetrical these intervals are, and how misleading it would be to base
the confidence intervals on±1.96(s.e.)!

23



2. In this question, we will analyse annual maximum sea levels (in cm) observed at Venice,
Italy, between the years 1931 and 1981 (inclusive).

(a) Load the data into R by typing:

> data(venice)

Now look at the data by typing

> venice

You should see a matrix with 51 rows (one for each of the years 1931–1981) and 11
columns. The values in each column correspond to the year, and theten largest sea
levels observed in each of these years (in descending order)For example, in 1979,
the ten largest sea levels were: 166, 140, 131, 130, 122, 118,116, 115, 115, 112, the
largest being 166cm.

(b) We intend to fit the Generalised Extreme Value distribution to the set of annual
maxima – i.e. the largest sea levels only (166cm in 1979, for example). Extract the
set of annual maxima in the following way:

(i) Create a new vector to store the set of annual sea level maxima by typing:

> maxima<-vector(’numeric’, length=51)

(ii) Now type:

> maxima<-venice[,2]

which will store the observations from column 2 invenice – i.e. the largest
sea levels from each year – in the vectormaxima .

We can fit the Generalised Extreme Value distribution to the set of annual maxima
using the functiongev.fit . Type

> gev.fit(maxima)

Write down the maximum likelihood estimates ofµ, σ and ξ, along with their
estimated standard errors. Also make a note of the value of the maximised log–
likelihood.

(c) Now produce a time series plot of the set of annual maxima by typing

> plot(maxima ∼venice[,1],type=’l’,xlab=’Year’,ylab=’Sea level
(cm)’)

which will plot the annual maxima against the first column invenice , which cor-
responds to the year. This will also provide convenient labels for both thex andy
axes in the plot. Does the time series plot of annual maxima look stationary?

(d) We will now attempt to model variations through time in the sequence of annual sea
level maxima by modelling a linear trend in the location parameterµ, i.e. µ(t) =
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β0 + β1(t), wheret represents the time–point (sot = 1 corresponds to 1931, etc.)
Set up a time matrix by typing:

> time<-matrix(1:51,ncol=1)

Now type

> gev.fit(maxima, ydat=time, mul=1)

which tells R to use the matrixydat as a matrix of covariates, andmul=1 tells
R which column in that matrix to use (as well as which parameter to use it for –µ!).
Write down the maximum likelihood estimates forβ0, β1, σ andξ, along with their
estimated standard errors, and make a note of the maximised log–likelihood.

(e) Use the maximised log–likelihood values from parts (b) and (d) to perform a like-
lihood ratio test to see if the model which allows for a trend provides a significant
improvement over the stationary fit (Hint:χ2

1(5%) = 3.84).

(f) Write down the simple linear regression equation forµ found from the fit in part (d),
i.e. µ(t) = β0 + β1(t). We will now write an R function to calculate the fitted trend
at each time point, and then superimpose this on the plot produced in part (c). Type

> trend.plot<-vector(’numeric’,51)

The vectortrend.plot will take the fitted values of the trend forµ obtained
from the equation. Now write

> for(i in 1:51)
+ {
+ trend.plot[i]<-beta0+beta1 * time[i,1]
+ }

wherebeta0 andbeta1 should be replaced with the estimated values found in
the fit in part (d). Now type

> lines(trend.plot ∼venice[,1])

which should superimpose a plot of the trend line against theyear on the original
time series plot.

25



3. In this question we will investigate the use of “Peaks Over Threshold” to circumvent the
problems of serial dependence when modelling threshold exceedances. We will do this
by examining hourly gust maximum wind speeds observed at High Bradfield, a location
in the Peak District in central northern England.

(a) These data were collected by the U.K. Meteorological Office, and are not included
with any of the standard R packages. Thus, to load the data, type

> gusts<-scan(’bradfield.txt’)

which will store the data in a vector calledgusts . Now produce a time series
plot of these data, by typing

> plot(ts(gusts))

The data you see correspond to the hourly gust maximum wind speeds (in knots)
collected over a ten–year period (1975–1984 inclusive) in the month of January;
thus, the first observation is the maximum gust wind speed observed between mid-
night and 01:00 on the 1st January 1975, etc. We restrict our analysis to January
because the U.K. has a seasonally varying wind climate, and the strongest wind
speeds are usually observed in the month of January (i.e. in January we observe
’genuine’ extremes of wind speed). Comment on the nature of this time series.

(b) We will now investigate the extent of temporal dependence in the series.

(i) Type

> acf(gusts) and
> pacf(gusts)

These commands will produce plots of the autocorrelation, and partial auto-
correlation function.

(ii) Now type

> plot(gusts[1:7259] ∼gusts[2:7260])

This will produce a plot of the time series against the seriesat lag 1 (the length
of this dataset is 7260).

Using your plots in (i) and (ii) above, comment on the degree of short–term temporal
dependence present in the series.

(c) We now intend to fit the Generalised Pareto Distribution (GPD) to a set of threshold
exceedances. Use the command

> mrl.plot(gusts)

to produce a mean residual life plot for the gust data, and usethis to choose an
appropriate threshold for identifying extremes.

(d) Now fit the GPD to the set of threshold exceedances, by using
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> gpd.fit(gusts,threshold)

wherethreshold is your chosen threshold from the mean residual life plot in
part (c). Make a note of the estimates forσ andξ (as well as their estimated stan-
dard errors).

(e) Nowdeclusterthe series of gusts and employ aPeaks Over Thresholdanalysis. Type

> cluster.peaks<-cluster10(gusts,threshold)

again, wherethreshold is the threshold identified in part (c). The function
cluster10 uses a value ofκ = 10 observations to identify clusters of extremes,
i.e. a cluster of extremes is deemed to have terminated as soon as at least 10 obser-
vations fall below the threshold. Now fit the GPD to the set of cluster peak excesses,
and make a note of the parameter estimates and estimated standard errors.[Note: you
can vary the declustering intervalκ by using different functions, e.g.cluster20
or cluster30]

(f) We will now calculate thethreshold exceedance ratefor each of the approaches in
parts (d) and (e). Typing

> length(gusts[gusts>threshold])/length(gusts) and
> length(cluster.peaks)/length(gusts)

wherethreshold is as before, will work out the threshold exceedance rateλu

for all excesses, andcluster peakexcesses, respectively. Write down these thresh-
old exceedance rates.

(g) You should now compare estimates of the 1000–observation return level using (i)
all threshold excesses and (ii) cluster peak excesses. Typing

> gpd.ret(data,threshold,1000)

but replacingdata with gusts and thencluster.peaks (and thethreshold
is that identified in part (c)) will estimate this value forall excesses andcluster peak
excesses, respectively. The output produced will be the same as before – i.e. you
will get estimates of the GPD parameters and their standard errors, but now you will
also get an estimate of the specified return level (and its standard error via the delta
method).

(h) Comment on your estimates of the 1000–observation return level in part (g) and
your GPD parameter estimates in parts (d) and (e). Which approach to inference do
you trust most?
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4 Multivariate extremes

4.1 Introduction

In this section we consider the problems we face if we wish to model the extremal behaviour
of two or more (dependent) processes simultaneously. Thereare several reasons why we may
wish to do this:

• to model the extreme behaviour of a particular variable overseveral nearby locations (e.g.
rainfall over a network of sites);

• to model the joint extremes of two or more different variables at a particular location (e.g.
wind and rain at a site);

• to model the joint behaviour of extremes which occur as consecutive observations in a
time–series (e.g. consecutive hourly maximum wind gusts during a storm).

All of these problems suggest fitting an appropriate limiting multivariate distribution to the
relevant data. However, as we shall see, the derivation of such a multivariate distribution is
not as easy as we might hope. The analogy with the Normal distribution as a model for means
breaks down as we move inton dimensions! It is not even clear what the ‘relevant data’ should
be! Most of the increased complexity is apparent in the move from 1 to 2 dimensions, so we
will focus largely on bivariate problems.

4.2 Componentwise maxima models

4.2.1 Example: network of rainfall measurements

Suppose we want to study the joint extremes of daily rainfallaccumulations at the network of 8
sites shown in Figure 14.
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Figure 14: Eight rainfall recording stations in southern Scotland

Such issues are of great interest, especially currently, e.g. given the severe flooding experienced
in the UK recently. Suppose we have sequences of daily total rainfall at each location. There
is liable to be strong inter–site dependence in extremes, inthe sense that days with heavy rain
are liable to occur simultaneously across locations. The raw multivariate observations are8–
dimensional vectors of the daily rainfall over the eight sites.
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Now suppose we wish to take a block–maxima approach, with ‘blocks’ being years. For any
given year, the 8–dimensional vector of annual maxima is unlikely to be one of the raw mul-
tivariate observations. Let’s simplify to the bivariate case. Let(X1, Y1), (X2, Y2), . . . be i.i.d.
vectors with distribution functionF (x, y). Now consider the componentwise block maxima

Mx,n = max
i=1,...,n

{Xi} and My,n = max
i=1,...,n

{Yi}.

We define thevector of componentwise maximato be

Mn = (Mx,n,My,n).

Mn is not necessarily one of the original observations(Xi, Yi). Nevertheless, we are interested
in the limiting behaviour ofMn asn → ∞. The first point to note is that standard univariate
extreme value results apply in each margin. When considering the dependence, this allows us
to make a simplifying assumption.

We assume that theXi andYi variables have a known marginal distribution. It is convenient to
assume this is the GEV(0,1,1) distribution, also known as the unit Fréchet distribution, which
has c.d.f.

F (z) = exp(−1/z), z > 0.

This gives rise to a very simple normalization of maxima:

Pr(Xi < x) = Pr(Mx,n/n < x) = exp(−1/x), x > 0,

(and similarly forYi). So if we consider the re–scaled vector

M∗

n
=

(

max
i=1,...,n

{Xi}/n, max
i=1,...,n

{Yi}/n

)

,

the margins are unit Fréchet for alln, and hence we can characterize the limiting joint behaviour
of M∗

n
without having to worry about the margins. Unfortunately nolimiting parametric family

exists! (for bivariate extremes, or multivariate extremesin general).

4.2.2 Theorem: limiting distributions for bivariate extre mes

Let M∗

n
= (M∗

x,n,M
∗

y,n) be the normalized maxima as above, where the(Xi, Yi) are i.i.d. with
standard Fréchet marginal distributions. Then if

Pr(M∗

x,n,M
∗

y,n) → G(x, y),

whereG is non–degenerate, thenG has the form

G (x, y) = exp {−V (x, y)} ; x > 0, y > 0 (13)

where:

V (x, y) = 2

∫ 1

0

max

(

ω

x
,
1 − ω

y

)

dH (ω) (14)

andH is a distribution function on[0, 1] satisfying the mean constraint:
∫ 1

0

ω dH (ω) = 0.5. (15)
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Hence the class of bivariate extreme value distributions isin one-to-one correspondence with
distribution functionsH satisfying the constraint (15). IfH is differentiable with densityh,
then (14) becomes

V (x, y) = 2

∫ 1

0

max

(

ω

x
,
1 − ω

y

)

h(ω)dω.

However some simple models arise whenH is not differentiable. E.g. ifH places mass0.5 on
each ofω = 0 andω = 1, then we get

G(x, y) = exp{−(x−1 + y−1)}, x > 0, y > 0,

corresponding to independentx andy.

Since the GEV provides the complete class of marginal limit distributions, then the complete
class of bivariate extreme value distributions is obtainedas follows. If we supposeX andY are
GEV with parameters(µx, σx, ξx) and(µy, σy, ξy) respectively, then the transformations

x̃ =

[

1 + ξx

(

x− µx

σx

)]1/ξx

and ỹ =

[

1 + ξy

(

y − µy

σy

)]1/ξy

obtain unit Fréchet margins. Hence

G(x, y) = exp{−V (x̃, ỹ)}

is a bivariate extreme value distribution with the appropriate margins for validV (.), and pro-
vided [1 + ξx(x− µx)/σx] > 0] and[1 + ξy(x− µy)/σy] > 0].

4.2.3 Modelling bivariate extremes in practice

In practice, modelling usually involves identifying a parametric sub–family with appropriate
flexibility to handle the structure inherent in the data. Models can be fitted, e.g. by maximum–
likelihood estimation, either in two steps (marginal components followed by dependence func-
tion), or in a single sweep. All of these procedures, including the choice of models, are handled
in a very similar way when dealing with threshold exceedances. We consider the details in the
next section.

4.3 Threshold excess models

We want to define our bivariate extremes in those observations which exceed a threshold in one
or other margin. For our bivariate observation(X, Y ), let’s focus onX. We have already seen
that the distribution function for the exceedances of a thresholdu by a variableX, conditional
onX > u for large enoughu, is given by:

G(x) = 1 − λ

{

1 +
ξ (x− u)

σ

}

−1/ξ

defined on{x− u : x− u > 0 and (1 + ξ (x− u) /σ) > 0}, whereξ 6= 0, σ > 0, andλ =
Pr (X > u). Now we can obtain a unit Fréchet margin with the transformation:

X̃ = −

(

log

{

1 − λx

[

1 +
ξx (X − ux)

σx

]

−1/ξx

})

−1

.
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If we apply the analogous transformation to in theY margin, we obtain

F̃ (x̃, ỹ) = exp {−V (x̃, ỹ)} ; x > ux, y > uy,

where:

V (x, y) = 2

∫ 1

0

max

(

ω

x
,
1 − ω

y

)

dH (ω)

andH is a distribution function on[0, 1] satisfying the mean constraint:
∫ 1

0

ω dH (ω) = 0.5.

4.3.1 Example: wave–surge data

Here we choose a different type of example of dependence to the rainfall problem considered
in Section 4.2. Here we consider two variables recorded concurrently at the same site. A series
of 3-hourly measurements on sea–surge were obtained from Newlyn, southwest England. For
suitably high thresholds, we can identify which observations are extreme.

4.3.2 Threshold representation

Bivariate threshold models are complicated by the possibility that a bivariate pair(x, y) may be
an ‘exceedance’ and yet exceed the specified threshold in only one of the two components.
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Figure 15: Threshold classification of bivariate data

4.3.3 Modelling the dependence structure

The class of bivariate extreme value models contains many families of distributions which can
be used to model the dependence structure in the data. The dependence structure must satisfy
the conditions onH (ω). Possible choices are:

• Logistic Model — symmetric
• Negative Logistic Model
• Bilogistic Model — asymmetric
• Dirichlet Model

Here we will focus on the logistic model and the bilogistic model as two commonly used but
contrasting choices.
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4.3.4 The Logistic model

G (x, y) = exp
{

−
(

x−1/α + y−1/α
)α
}

wherex > 0, y > 0 andα ∈ (0, 1).

• α → 1 corresponds to independent variables.

• α → 0 corresponds to perfectly dependent variables.

• This model is symmetric — the variables are exchangeable.

4.3.5 The Bilogistic model

G (x, y) = exp
{

xγ1−α + y (1 − γ)1−β
}

where0 < α < 1, 0 < β < 1 andγ = γ (x, y;α, β) is the solution of:

(1 − α) x (1 − γ)β = (1 − β) yγα

• Independence is obtained whenα = β → 1 and when one ofα or β is fixed and the other
approaches 1.

• Whenα = β the model reduces to the logistic model.

• The value ofα− β determines the extent of asymmetry in the dependence structure.

4.3.6 Likelihood calculations

• For points in Region 1, the bivariate model structure shown applies, and the density of
F̃ (x̃, ỹ) gives the appropriate likelihood component.

• In other regions, the likelihood component for the points must be censored.

4.3.7 The likelihood function

The likelihood function can be written as:

L (θ; (x1, y1) , . . . , (xn, yn)) =

n
∏

i=1

ψ (θ; (xi, yi))

whereθ gives the parameters ofF and

ψ (θ; (x, y)) =































∂2F
∂x∂y

∣

∣

∣

(x,y)
if (x, y) ∈ Region 1

∂F
∂x

∣

∣

(x,uy)
if (x, y) ∈ Region 2

∂F
∂y

∣

∣

∣

(ux,y)
if (x, y) ∈ Region 3

F (ux, uy) if (x, y) ∈ Region 4

The various models can be fitted to data by maximum likelihoodestimation using routines
available in theRpackageevd . We will explore this in the secondRpractical.
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4.4 Point process representation

It helps our understanding of bivariate (and hence multivariate) extremes to think in terms of a
point process model as follows. Let(x1, y1), (x2, y2), . . . be a sequence of independent bivariate
observations form a distribution with standard Fréchet margins such that

Pr{M∗

x,n ≤ x,M∗

y,n ≤ y} → G(x, y).

LetNn be a sequence of point processes defined by

Nn = {(n−1x1, n
−1y1), . . . , (n

−1xn, n
−1yn)}.

Then
Nn → N

on regions bounded away from(0, 0), whereN is a non–homogeneous Poisson process on
(0,∞) × (0,∞). Moreover, if we change our coordinates to an angular-radial form (‘pseudo-
polar’) by setting

r = x and ω =
x

x+ y
,

then the intensity function ofN is

λ(r, ω) = 2
dH(ω)

r2
,

whereH is related toG in the usual way (Equations (13) — (15)). This is helpful becauser
andω are measures of distance (from the origin) and angle (from thex-axis) respectively, and
the dependence functionH determines the angular spread of points ofN , and is independent
of radial distance. If H is differentiable, then sinceω measures the relative size ofx to y in the
pair (x, y), thenh(.) determines the density of events of different relative size. It is fairly easy
now to picture what different densitiesh(.) will look like it terms of the scatter of points in the
limiting point processN .

4.4.1 The point process representation in practice

We assume the Poisson limit to be a reasonable approximationtoNn on an appropriate region.
Convergence is guaranteed on any region bounded from the origin, and things are especially
simple if we choose a region of fromA = {(x, y) : x/n+y/n > r0} for suitably larger0, since
then

Λ(A) = 2

∫

A

dr

r2
dH(ω) = 2

∫

∞

r=r0

dr

r2

∫ 1

ω=0

dH(ω) = 2/r0,

which is constant with respect to the parameters ofH. If we assumeH has densityh, then the
likelihood is given by

L(θ; (x1, y1), . . . , (xn, yn)) = exp{Λ(A)}

NA
∏

i=1

λ(x(i)/n, y(i)/n)

∝

NA
∏

i=1

h(ωi),

whereωi = x(i)/(x(i) + y(i)) for theNA points(x(i), y(i)) which are inA. [This is based on
assuming that we have already transformed the margins so that (x1, y1), . . . , (xn, yn) have stan-
dard Fréchet distributions.] Now we can fit the model using maximum–likelihood estimation.
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4.4.2 Point process model for wave–surge data

A point process model was fitted to the wave–surge data after transformation to unit Fréchet
margins, and using a threshold of the formX + Y = r0, wherer0 was chosen so that the
marginal thresholds are both at the 95th percentile. Fitting the two dependence models (logistic
and bilogistic) to the wave–surge data we obtain the following results:

Model log–lik. α β
Logistic 227.2 0.659 (0.013)

Bilogistic 230.2 0.704 (0.024) 0.603 (0.032)

These results suggest a fairly weak, while clearly significant, dependence. The logistic and
bilogistic models can be compared using a likelihood ratio test, and significant asymmetry is
suggested. It is also possible to produce graphs of the fittedh(ω) functions, with the histograms
of the empiricalω values super–imposed. Here we just show some dependence functions for
the logistic model.
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Figure 16: Some dependence functions for the logisitc model

4.5 Asymptotic dependence and independence

One key problem with using limit distributions for multivariate extremes is that they force one
of two possibilities:

1. extremes occur independently in the different margins;

2. extremes occur with a dependence structure which conforms to an asymptotic extreme
value distribution.
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In practice this imposition is not helpful . . . it is often thecase that asymptotic independence
is suggested by the data, and yet quite strong dependence is present, even at high levels. Data
that seem to be dependent at ordinary levels may not necessarily be dependent in the limiting
distribution. Consider the regionA =

{

X
n
> u, Y

n
> v
}

. Then:

Pr

[(

X

n
,
Y

n

)

∈ A

]

=







C/n, Asymptotic Dependence

C/n2, Exact Independence

whereC is a constant term that does not depend onn.

4.5.1 The coefficient of tail dependence

Consider the variable:
T = min (X, Y ) .

The distribution function ofT is given by:

Pr (T ≤ t) = 1 −
K

t1/δ
, t > u,

whereu is a threshold above which the data are regarded as extreme andK is a (almost) constant
term with respect tot. δ gives a measure of extremal dependence betweenX andY and is
known as the "coefficient of tail dependence".

4.5.2 Inference forδ

The likelihood function forT is:

L (K, δ; t) =

(

1 −
K

u1/δ

)n−nu
(

K

δ

)nu nu
∏

i=1

t
−(1+1/δ)
i

wherenu is the number of observations that satisfyT > u. Maximum likelihood estimation
gives the estimate:

δ̂ =
1

nu

nu
∑

i=1

log

(

ti
u

)

evaluated for thenu points in the data set aboveu. δ describes the limiting dependence structure:

• δ = 1 implies asymptotic dependence.
• 1

2
< δ < 1 implies positive association.

• δ = 1
2

implies near independence.
• 0 < δ < 1

2
implies negative association.
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4.5.3 Wave–surge data

Plots of δ̂ against increasingu give an indication of the level of dependence present between
two processes in the limiting distribution.
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Figure 17: Wave-Surge data with 95% quantiles;δ–plot with 95% confidence bounds.

δ = 1 is within the 95% confidence bounds for allu asu increases, suggesting that wave–
height and surge areasymptotically independent.

Research into modelling data in such instances, i.e. where there is still dependence within the
‘extremes’ in the data set, but yet asymptotic independenceis suggested, is all fairly recent. The
most prominent work is the article by Heffernan and Tawn (JRSS B, 2004). Here they develop
semiparametric models based on assuming observations are extreme in at least one component,
and then conditioning on this. This approach can be quite messy in implementation, combining
as it does a range of different estimation procedures, and somead hocassumptions concerning
the parametric forms of the key normalising constants. Herewe briefly consider another ap-
proach, suggested by (Bortotet al., 2000), and currently the subject of ongoing work by Atyeo
and Walshaw.

4.5.4 The multivariate Gaussian tail model

The multivariate Gaussian tail model for the multivariate distribution functionF is defined on
the joint tail region (Bortot et al., 2000):

R(u) = (u1,∞) × . . .× (up,∞)

whereu = (u1, . . . , up). (e.g. Region 1 in Figure 15). For each observation in the joint
tail regionR(u) we transform each marginal observation to have a standard Normal marginal
distribution, and then apply thep–dimensional standard Normal distribution function. We then
transformbackto extreme value margins. This provides a more realistic representation of the
dependence, while retaining the asymptotic arguments for the marginal extremes.

We have been able to fit such models to the8-dimensional rainfall problem associated with
Figure 14, however inference for this problem was much simplified by adopting a Bayesian
approach.
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5 Bayesian inference for extremes

Throughout this short course, the method of maximum likelihood has provided a general and
flexible technique for parameter estimation. Given a (generic) parameter vectorψ within a
family Ψ, the likelihood function is the probability (density) of the observed data as a function
of ψ. Values ofψ that have high likelihood correspond to models which give high probability
to the observed data. The principle of maximum likelihood estimation is to adopt the model
with greatest likelihood; of all the models under consideration, this is the one that assigns
the highest probability to the observed data. Other inferential procedures, such as “method
of moments”, provide viable alternatives to maximum likelihood estimation; moments–based
techniques chooseψ optimally by equating model–based and empirical moments, and solving
for ψ to obtain parameter estimates. These, and other procedures(such as probability weighted
moments,L–moments and ranked set estimation), are discussed in detail in, amongst other
places, Kotz and Nadarajah (2000).

5.1 General theory

Bayesian techniques offer an alternative way to draw inferences from the likelihood func-
tion, which many practitioners often prefer. As in the non–Bayesian setting, we assume data
x = (x1, . . . , xn) to be realisations of a random variable whose density falls within a parametric
family F = {f(x;ψ) : ψ ∈ Ψ}. However, parameters of a distribution are now treated as ran-
dom variables, for which we specifyprior distributions– distributions of the parametersprior
to the inclusion of data. The specification of these prior distributions enables us to supplement
the information provided by the data – which, in extreme value analyses, is often very limited
– with other sources of information. At the same time, it can be contended that, since different
analysts might specify different priors, conclusions become subjective.

Leaving aside the arguments for and against the Bayesian methodology, suppose we model
our observed datax using the probability density functionf(x;ψ). The likelihood function for
ψ is thereforeL(ψ|x) = f(x;ψ). Also, suppose our prior beliefs about likely values ofψ are
expressed by the probability density functionπ(ψ). We can combine both pieces of information
using Bayes Theorem, which states that

π(ψ|x) =
π(ψ)L(ψ|x)

f(x)
, (16)

where

f(x) =



















∫

Ψ

π(ψ)L(ψ|x)dψ if ψ is continuous,

∑

Ψ

π(ψ)L(ψ|x) if ψ is discrete.

Sincef(x) is not a function ofψ, Bayes Theorem can be written as

π(ψ|x) ∝ π(ψ) × L(ψ|x)

i.e. posterior ∝ prior× likelihood.

In equation (16),π(ψ|x) is theposteriordistribution of the parameter vectorψ, ψ ∈ Ψ, i.e.
the distribution ofψ after the inclusion of the data. This prior distribution is often of great
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interest, since the prior–posterior changes represent thechanges in our beliefs after the data has
been included in the analysis. However, computation of the denominator in (16) can be prob-
lematic, and usually analytically intractable. There is nothing particularly special about the fact
that equation (16) represents a Bayesian posterior; given any complex non–standard probability
distribution, we need ways to understand it, to calculate its moments, to compute its conditional
and marginal distributions and their moments, all of which could require troublesome integra-
tion as in the denominator of equation (16). We need a way of understanding posterior densities
which does not rely on being able to analytically integrate the kernel of the posterior; stochastic
simulation is one possible solution.

5.2 Markov chain Monte Carlo

The recent explosion in Markov chain Monte Carlo (MCMC) techniques owes largely to their
application in Bayesian inference. The idea here is to produce simulated values from the poste-
rior distribution – not exactly, as this is usually unachievable, but through an appropriate MCMC
technique.

5.2.1 The Gibbs sampler

The Gibbs sampler is a way of simulating from multivariate distributions based only on the
ability to simulate from conditional distributions. Suppose the density of interest (usually the
posterior density) isπ(ψ), whereψ = (ψ1, . . . , ψd)

′, and that the full conditionals

π(ψi|ψ1, . . . , ψi−1, ψi+1, . . . , ψd) = π(ψi|ψ−i) = πi(ψi), i = 1, . . . , d

are available for simulating from (ψ−i denotes the parameter vectorψ excludingψi). The Gibbs
sampler uses the following algorithm:

1. Initialise the iteration counter tok = 1. Initialise the state of the chain toψ(0) =
(ψ

(0)
1 , . . . , ψ

(0)
d )′;

2. Obtain a new valueψ(k) fromψ(k−1) by successive generation of values

ψ
(k)
1 ∼ π(ψ1|ψ

(k−1)
2 , . . . , ψ

(k−1)
d )

ψ
(k)
2 ∼ π(ψ2|ψ

(k)
1 , ψ

(k−1)
3 , . . . , ψ

(k−1)
d )

...
...

ψ
(k)
d ∼ π(ψd|ψ

(k)
1 , . . . , ψ

(k)
d−1);

3. Change counterk to k + 1, and return to step 2.

Each simulated value depends only on the previous simulatedvalue, and not any other previous
values or the iteration counterk. The Gibbs sampler can be used in isolation if we can readily
simulate from the full conditional distributions; however, this is not always the case. Fortu-
nately, the Gibbs sampler can be combined with Metropolis–Hastings schemes when the full
conditionals are difficult to simulate from.
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5.2.2 Metropolis–Hastings sampling

Suppose again thatπ(ψ) is the density of interest. Further, suppose that we have some arbi-
trary transition kernelp(ψi+1,ψi) (which is easy to simulate from) for iterative simulation of
successive values. Then consider the following algorithm:

1. Initialise the iteration counter tok = 1, and initialise the chain toψ(0);

2. Generate a proposed valueψ′ using the kernelp(ψ(k−1),ψ′);

3. Evaluate theacceptance probabilityA(ψ(k),ψ′) of the proposed move, where

A(ψ,ψ′) = min

{

1,
π(ψ′)L(ψ′|x)p(ψ′,ψ)

π(ψ)L(ψ|x)p(ψ,ψ′)

}

;

4. Putψ(k) = ψ′ with probabilityA(ψ(k−1),ψ′), and putψ(k) = ψ(k−1) otherwise;

5. Change the counter fromk to k + 1 and return to step 2.

So at each stage, a new value is generated from the proposal distribution. This is either accepted,
in which case the chain moves, or rejected, in which case the chain stays where it is. Whether or
not the move is accepted or rejected depends on the acceptance probability which itself depends
on the relationship between the density of interest and the proposal distribution. Common
choices for the proposal distribution include symmetric chains, wherep(ψ,ψ′) = p(ψ′,ψ),
and random walk chains, where the proposalψ′ at iterationk isψ′ = ψ + εk, where theεk are
IID random variables.

5.2.3 Hybrid methods

Here, we combine Gibbs sampling and Metropolis–Hastings schemes to form hybrid Markov
chains whose stationary distribution is the distribution of interest. For example, given a mul-
tivariate distribution whose full conditionals are awkward to simulate from directly, we can
define a Metropolis–Hastings scheme for each full conditional, and apply them to each compo-
nent in turn for each iteration. This is similar to Gibbs sampling, but each component update
is a Metropolis–Hastings update, instead of a direct simulation from the full conditional. An-
other scheme, known as “Metropolis within Gibbs”, goes through each full conditional in turn,
simulating directly from the full conditionals wherever possible, and carrying out a Metropolis–
Hastings update elsewhere.

5.3 Bayesian inference for extremes

There are various (and some may say compelling) reasons for preferring a Bayesian analysis
of extremes over the more traditional likelihood approach.As already discussed, since extreme
data are (by their very nature) quite scarce, the ability to incorporate other sources of informa-
tion through a prior distribution has obvious appeal. Bayes’ Theorem also leads to an inference
that comprises a complete distribution, meaning that the variance of the posterior distribution,
for example, can be used to summarise the precision of the inference, without having to rely
upon asymptotic theory. Also, implicit in the Bayesian framework is the concept of thepre-
dictive distribution. This distribution describes how likely are different outcomes of a future
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experiment. The predictive probability density function is given by

f(y|x) =

∫

Ψ

f(y|ψ)π(ψ|x)dψ (17)

whenψ is continuous. From equation (17), we can see that the predictive distribution is formed
by weighting the possible values forψ in the future experimentf(y|ψ) by how likely we believe
they are to occur after seeing the data. For example, a suitable model for the threshold excess
Y of a process isY ∼ GPD(σ, ξ). Estimation ofψ = (σ, ξ) could be made on the basis of
previous observationsx = (x1, . . . , xn). Thus, in the Bayesian framework, we would have

Pr{Y ≤ y|x1, . . . , xn} =

∫

Ψ

Pr{Y ≤ y|ψ}π(ψ|x)dψ. (18)

Equation (18) gives the distribution of a future threshold excess, allowing for both parameter
uncertainty and randomness in future observations. Solving

Pr{Y ≤ qr,pred|x1, . . . , xn} = 1 −
1

r

for qr,pred therefore gives an estimate of ther–year return level that incorporates uncertainty due
to model estimation. Though (17) may seem analytically intractable, it can be approximated
if the posterior distribution has been estimated using, forexample, MCMC. After removal of
the “burn–in” period, the MCMC procedure gives a sampleψ1, . . . ,ψB that can be regarded as
realisations from the stationary distributionπ(ψ|x). Thus

Pr{Y ≤ qr,pred|x1, . . . , xn} ≈
1

B

B
∑

i=1

Pr{Y ≤ qr,pred|ψi} ,

which we can solve forqr,pred using a numerical solver. Another reason lending appeal to
Bayesian inference for extremes is that it is not dependent on the regularity assumptions re-
quired by the theory of maximum likelihood. For example, when ξ < −0.5, maximum like-
lihood estimation breaks down – in this situation, a Bayesian approach provides a feasible
alternative.

5.3.1 Example: Annual maximum sea levels: Port Pirie, SouthAustralia

Figure 18 shows a time series plot of annual maximum sea levels at another Australian location
– Port Pirie, in South Australia. Notice that, unlike the corresponding data from Fremantle in
Wester Australia, there doesn’t appear to be any trend in this series; in fact, the series appear
stationary.

We use the GEV as a model for the annual maximum sea levels at Port Pirie Zi in year i,
i.e.

Zi ∼ GEV (µ, σ, ξ) , i = 1, . . . , 65.

When employing MCMC methods it is common to re–parameterisethe GEV scale parameter
and work withη = log(σ) to retain the positivity of this parameter. In the absence ofany expert
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Figure 18: Time series plot of annual maximum sea levels observed at Port Pirie.

prior information regarding the three parameters of the GEVdistribution, we adopt a ‘naive’
approach and use largely non–informative, independent priors for these, namely

π(µ) ∼ N(0, 10000),

π(η) ∼ N(0, 10000) and

π(ξ) ∼ N(0, 100),

the large variances of these distributions imposing near–flat priors.

We use a Metropolis–Hastings MCMC sampling scheme; after setting initial starting values
for ψ = (µ, η, ξ), we use an arbitrary probability rulep(ψi+1|ψ) for iterative simulation of
successive values in the chain. Once this rule has been used to generate a candidate valueψ′

for ψi+1, we accept this with probabilityA (see 5.2.2); otherwise,ψi+1 = ψi. Here, we use a
random walkprocedure to generate candidate values, i.e.

µ′ = µi + ǫµ

η′ = ηi + ǫη and

ξ′ = ξi + ǫξ,

with theǫ being normally distributed with zero mean and variancesvµ, vη andvξ respectively.
In fact, the choice of algorithm and its ‘tuning parameters’(vµ, vη andvξ) does not affect the
model. It does, however, affect the efficiency of the algorithm. Some believe there is a ‘fine art’
to tuning the algorithm used, but it is common to aim for an overall acceptance rate of around
30%.

Initialising withψ(0) = (5, 0.5, 0.1), we get the following values generated by 5000 iterations
of the MCMC scheme (see Figure 19). The settling–in period seems to take around 300 iter-
ations, after which the chain seems to have converged. This settling–in period is often known
as theburn–in. Thus, after deleting the first 300 simulations, the remaining 4700 simulated
values can be treated as dependent realisations whose marginal distribution is the target pos-
terior. Over-leaf, in Figure 20, is a panel of plots corresponding to the sampling distributions
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of the three GEV parameters (after the removal of burn–in), as well as the 100–year return
level. The sampling distribution for the posterior of the return level has been obtained by inver-
sion of the distribution function for the GEV (Equation 1) and then by repeated substitution of
µ(301), σ(301), ξ(301), . . . , µ(5000), σ(5000), ξ(5000).

The posterior means, standard deviations and 95% credible intervals are shown in Table 4,
along with the corresponding maximum likelihood estimatesfor comparison.
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Figure 19: MCMC realisations of the GEV parameters in a Bayesian analysis of the Port Pirie
sea level maxima.

µ σ ξ q100
Posterior mean (st. dev.)3.874 (0.028) 0.203 (0.021) –0.024 (0.098) 4.788 (0.255)

distribution 95% CI (3.819, 3.932) (0.166, 0.249) (–0.196, 0.182) (4.516, 5.375)
Maximum m.l.e. (s.e.) 3.872 (0.028) 0.198 (0.020) -0.040 (0.098) 4.692 (0.158)
likelihood 95% CI (3.821, 3.930) (0.158, 0.238) (–0.242, 0.142) (4.501, 5.270)

Table 4: Summary statistics for the posterior location, scale and shape, and the 100–year return
level. Shown also, for comparison, are the corresponding m.l.e.s, the confidence interval for the
return level being found via profile likelihood.
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Figure 20: Sampling distributions for the posterior densities ofµ, σ, ξ and the 100–year return
level.

5.3.2 More complex structures: A random effects model for extreme wind speeds

In this section we briefly discuss the work which Lee Fawcett will present at next week’s TIES
conference. In this work, we develop a hierarchical model for hourly maximum wind speeds
over a region of central and northern England. The data used consist of hourly gust maximum
wind speeds recorded for the British Meteorological Office at twelve locations (see Figure 21).
We construct a model which is based on a standard limiting extreme value distribution, but
incorporates random effects for the sites, for seasonal variation, and for the serial dependence
inherent in the time series of hourly maximum speeds obtained at each site. The Bayesian
paradigm provides the most feasible modelling approach to capture the rich meteorological
structure present in these data. Figure 22 illustrates an exploratory analysis of data from two
contrasting sites, Nottingham and Bradfield. Shown are timeseries plots of the hourly maxima,
histograms, and a plot of the time series against the versionat lag 1. The first three years of
data only are used in each case, to best illustrate the relevant data characteristics. We now (very
briefly) outline the model structure used.

Modelling threshold exceedances
We will start with the Generalised Pareto Distribution as a model for threshold excesses; by
doing so, we can incorporate more extreme data in our analysis than if we were to select “block
maxima”, and so increase the precision of our analysis. Thus, wind speed excesses over a high
threshold will be modelled with a GPD(σ, ξ).
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Figure 21: Location of wind speed stations.
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Figure 22: Time series plots and histograms of hourly gusts observed at Bradfield (top row) and
Nottingham (bottom row) over a three year period (1975–1977inclusive). Also shown are plots
of the time series against the lagged series.

Site and seasonal variability
For our purposes, we need the GPD parameters to vary across sites, and seasonally. We take
a pragmatic approach to seasonality, partitioning the annual cycle into twelve ‘months’. Thus
our hierarchical model will need to yield parameter pairs(σm,j , ξm,j) for m = 1, . . . , 12 and
j = 1, . . . , 12, wherem andj are indices of season and site respectively. It is also necessary
to allow the thresholdu used for excesses modelled by the GPD to vary, since different criteria
about what constitutes an extreme value will be in play for each combination of season and site.
We will denote byum,j the value of the exceedance threshold for monthm and sitej.

Temporal dependence
To account for the presence of temporal dependence within each season and site, we now adopt
approach 3 outlined in Section 2.1.3; specifically, we use bivariate extreme value theory dis-
cussed in Part 4 of this short course to formulate a simple first–order Markov chain structure
for successive extreme wind speeds. As with fitting to all threshold exceedances and then ad-
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justing the inferences accordingly (as we recommended withthe Newlyn sea–surge data in
Section 2.1.4), this approach avoids the need to arbitrarily identify clusters of extremes and
filter out a set of independent extreme values (thus discarding many precious extremes!), but
also quantifies the extent of extremal dependence at each site. Put simply, at each site, the lo-
gistic model with parameterαj (discussed in Part 4) is used to model each successive pair of
threshold exceedances (say (xi, xi+1)) at sitej. The parameterαj ∈ (0, 1] measures the strength
of dependence between consecutive extremes, smaller values indicating stronger dependence.
Independence and complete dependence are obtained whenαj = 1 andαj ց 0 respectively.
Following work in Fawcett (2005), which suggests that the serial dependence in extremes is
fairly constant across all seasons, we assume that the Markov chain model describes the depen-
dence over all seasons at sitej.

Threshold stability property
In order to ensure a threshold stability property in our models, we usẽσm,j = σm,j − ξm,jum,j

in place of the usual scale parameterσm,j . With this parameterisation, if(X − u∗m,j) is dis-
tributed GPD(̃σm,j , ξm,j), then for all valuesum,j > u∗m,j, we have that(X − um,j) is also
GPD(̃σm,j , ξm,j) distributed (e.g. see Coles (2001)). This is useful here, because it allows com-
parisons of the GPD scale and shape parameters across seasons and sites. It also allows us
to specify prior information for both parameters without having to worry about the additional
complications that would arise for parameters which were threshold dependent.

The model
We then specify the following random effects model for our extreme wind speeds:

log(σ̃m,j) = γ
(m)
σ̃ + ǫ

(j)
σ̃ ,

ξm,j = γ
(m)
ξ + ǫ

(j)
ξ and

αj = ǫ(j)α ,

where, generically,γ and ǫ represent seasonal and site effects respectively. We work with
log(σ̃m,j) for computational convenience, and to retain the positivity of the scale parameter
σ̃m,j . All random effects for log(σ̃m,j) and ξm,j are taken to be normally and independently
distributed:

γ
(m)
σ̃ ∼ N0(0, τσ̃) and (19)

γ
(m)
ξ ∼ N0(0, τξ), m = 1, . . . , 12, (20)

for the seasonal effects, and

ǫ
(j)
σ̃ ∼ N0(aσ̃, ζσ̃) and

ǫ
(j)
ξ ∼ N0(aξ, ζξ), j = 1, . . . , 12,

for the site effects, whereN0(η, ρ) is the normal distribution with meanη andprecisionρ (used
for notational convenience). We choose the mean of the normal distribution of the seasonal
effects to be fixed at zero in (19) and (20) in order to avoid over–parameterisation and problems
of model identifiability, although we could equally well have fixed the mean for the distribution
of thesiteeffects to achieve this. In the absence of any prior knowledge aboutαj , we set the
prior by specifying

ǫ(j)α ∼ U(0, 1).
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The final layer of the model is the specification of prior distributions for the random effect
distribution parameters. Here we adopt conjugacy whereverpossible to simplify computations,
specifying:

aσ̃ ∼ N0(bσ̃, cσ̃), aξ ∼ N0(bξ, cξ);

τσ̃ ∼ Ga(dσ̃, eσ̃), τξ ∼ Ga(dξ, eξ);

ζσ̃ ∼ Ga(fσ̃, gσ̃), ζξ ∼ Ga(fξ, gξ);

subject to the choice of arguments for these functions, i.e.the hyper–parameters which deter-
mine the precise Normal and Gamma distributions.

MCMC algorithm
We use a hybrid scheme (see Section 5.2.3) – specifically ‘Metropolis with Gibbs’ – to sample
form the posteriors. This means we update each component singly using a Gibbs sampler where
the conjugacy allows straightforward sampling from the full conditionals, and a Metropolis step
elsewhere.

Some results
Some results are shown in Figures 23–26 and in Table 5. The main points to notice are listed
below:

— Advantage of the hierarchical model over a standard likelihood–based analysis: a reduc-
tion in sampling variation (posterior standard deviationsin the bottom portion of Table
5 are substantially smaller than the corresponding standard errors) due to the pooling of
information across sites and seasons

— Figure 25 further highlights this reduction in variability – notice theshrinkagein estimates
of the GPD shape parameterξ in the Bayesian analysis relative to the standard likelihood–
based analysis

— Separate seasonal parameters are recombined for each siteto obtain site–by–site esti-
mates of return levels (see Figure 25, bottom right); noticethat estimates of extreme
quantiles using maximum likelihood estimation can be very unstable, whereas the hier-
archical model achieves a greater degree of stability through the pooling of information
across sites

— Figure 26 shows an extension topredictive return levels, which cannot be achieved under
the classical approach to inference
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Bradfield, January Nottingham, July
Mean (st. dev.)MLE (asymp. s.e.) Mean (st. dev.)MLE (asymp. s.e.)

γ
(m)
σ̃ 1.891 (0.042) 1.294 (0.042)
γ

(m)
ξ 0.021 (0.018) 0.002 (0.018)

ǫ
(j)
σ̃ 0.367 (0.044) –0.121 (0.041)
ǫ
(j)
ξ –0.105 (0.020) –0.059 (0.017)

ǫ
(j)
α 0.385 (0.009) 0.300 (0.011)
σ̃m,j 7.267 (0.211)8.149 (0.633) 3.234 (0.061)2.914 (0.163)
ξm,j –0.084 (0.015)–0.102 (0.055) –0.057 (0.013)0.018 (0.044)
αj 0.385 (0.009)0.368 (0.012) 0.400 (0.011)0.412 (0.020)

Table 5: Bayesian random effects analysis of extreme wind speeds – Bradfield (January) and
Nottingham (July)
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6 R session: Multivariate extremes and Bayesian inference

As before, you will need to start R, and then attach the libraries ismev andevd , and the sup-
plementary R routines we have provided, using the commands:

> library(ismev)
> library(evd)
> source(’Rstufflee.r’)

1. In this question we carry out a simple bivariate analysis using the block–maxima ap-
proach. The datasetwind has 40 rows and 3 columns; the second and third columns
contain annual maximum wind speeds at Albany, New York and Hartford, Connecticut
(respectively) over the period 1944 to 1983.

(a) Load the data intoRusing:

> data(wind)

and have a look at it by typing

> wind

(b) The data we want are the annual maxima for Hartford and Albany respectively,
stored in columns 2 and 3. We extract them using

> hartford<-wind[,2]
> albany<-wind[,3]

and then recombine them into a vector of bivariate annual maxima using

> blockmax<-cbind(hartford,albany)

(c) We can now fit a bivariate extreme value distribution using the logistic model:

> fbvevd(blockmax)

since the logistic model is the default. You may like to experiment with other mod-
els, e.g.

> fbvevd(blockmax,model="bilog",std.err = FALSE)

although note that this model is too complex to calculate standard errors, hence
the need to switch this facility off (to avoid an error!). Youmay like to experiment
with other models.

(d) If we want to produce diagnostic plots we must first createan object containing the
fits, e.g.

> fit1<-fbvevd(blockmax)
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and then run the plots command

> plot.bvevd(fit1)

You may like to think about what these plots are telling us, and investigate how
well different models fit these data.

2. The data setwavesurge contains the data on which the bivariate example in Sec-
tion 4.3 was based. The data has 2894 rows and 2 columns; corresponding to the
wave height and sea surge in consecutive measurements takenat Newlyn, Cornwall,
between 1971 and 1977.

(a) Load the data intoRusing:

> data(wavesurge)

Now separate wave and surge using:

> wave<-wavesurge[,1]
> surge<-wavesurge[,2]

(b) You can check this has worked by plotting surge against wave height using:

> plot(wave,surge)

At this stage it would be possible to carry out univariate threshold–based anal-
yses of each ofwave andsurge separately, and you may like to do this in
your own time. However we will proceed directly to a bivariate analysis in the
exercises below.

(c) We will first identify appropriate thresholds for the analysis. We decide to iden-
tify the empirical95% quantile in each margin, and we can do this using:

> quantile(wave,0.95)
> quantile(surge,0.95)

We can now create an appropriate bivariate threshold vector, e.g. using:

> thresh<-c(6.080,0.322)

(d) We are now in a position to fit various bivariate models to the bivariate object
wavesurge :

> fbvpot(wavesurge,thresh)

fits the logistic model (the default). Check you understand all of the output,
including identifying the relevant model parameters.
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(e) To fit the bilogistic model, use:

> fbvpot(wavesurge,thresh,model=”bilog”)

You may like to experiment with other models.

(f) For any particular model fit, we can explore the model fit, and various aspects
of the inference, using the graphical routineplot.bvpot() applied to an ob-
ject generated from a fit. For example, to investigate the fitted logistic model,
use:

> fitlogistic<-fbvpot(wavesurge,thresh)
> plot.bvpot(fitlogistic)

3. We return to the datasetwind containing annual maximum wind speeds at Albany,
New York and Hartford, Connecticut over the period 1944 to 1983. The first column
gives corresponding years. The data set should already be inR, but if you have not
done Question 1 in thisRsession, reload it using:

> data(wind)

Now separate the two sets of wind speeds using

> albany<-wind[,2] and
> hartford<-wind[,3]

The function

> gev.bayes(n,dataset,mustart,sigmastart,xistart, . . .
. . . errmu,errlogsigma,errxi,sdmu,sdlogsigma,sdxi)

produces (approximate) draws from the posterior distribution π(µ, σ, ξ|y), where
µ, σ andξ are the location, scale and shape parameters of the GEV distribution and
y = (y1, y2, . . . , y40) are the annual wind speed maxima in years 1944, 1945,. . .,
1983. This routine uses Metropolis–Hastings sampling witha random walk update
scheme for each of the parameters. As in the notes, independent Normal priors are
used forµ, log(σ) andξ.

The arguments in the function are defined as follows:
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n The number of iterations in the Metropolis–Hastings sampler
dataset A single vector containing the data
mustart The starting value forµ in the chain
sigmastart The starting value forσ in the chain
xistart The starting value forξ in the chain
errmu The random walk innovation variance forµ
errlogsigma The random walk innovation variance for log(σ)
errxi The random walk innovation variance forξ
sdmu The Normal distribution prior standard deviation forµ
sdlogsigma The Normal distribution prior standard deviation for log(σ)
sdxi The Normal distribution prior standard deviation forξ

(a) Run the Metropolis–Hastings sampler for the wind speed maxima observed at
Albany, NY, for 10,000 iterations, using

– (µ(0), σ(0), ξ(0)) = (20, 15, 0.1);

– vµ = vlog(σ) = vξ = 0.1;

– Large Normal prior standard deviations forµ, log(σ) andξ – 10000, 10000,
100 (respectively).

Make sure you store your results somewhere, e.g. use

> mcmc.results1<-gev.bayes( ...

and ignore thewarning message that R returns. Thenmcmc.results1
will store the 10,000 draws from the posteriors ofµ, log(σ) andξ, as well as
the corresponding acceptance probabilities – these can be accessed by typing,
for example,

> mcmc.results1$mu

(b) Now examine your output using

> par(mfrow=c(3,1))
> plot(ts(mcmc.results1$mu))
> plot(ts(mcmc.results1$logsigma))
> plot(ts(mcmc.results1$xi))

(You may want to edit the labels for the axes as we did in Part 3 of this course,
using, for example,xlab=’iteration’ .) Do you think your sampler is
performing well? Does it converge? If so, what is the ’burn–in’ period?

(c) Remember, an overall acceptance probability for each parameter of between
30%–50% is usually good enough. Look at your acceptance probabilities forµ,
log(σ) andξ by typing, for example

> mean(mcmc.results1$aprobmu)

Do you think your sampler is performing well?
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(d) Now run the sampler again (maybe store your results inmcmc.results2 )
but choose more appropriate starting values based on your plots in part (b) and
change the variances of your random walk innovations if necessary (if you in-
creaseerrmu , errlogsigma or errxi the corresponding acceptance prob-
abilities will decrease). Examine your output as you did in parts (b) and (c) and
check for improvement.

(e) Once you are satisfied with your MCMC, you should summarise your posteri-
ors (after the removal of burn–in). Typing

> mu.burn<-mcmc.results2$mu[2000:10000]

would, for example, discard the first 2000 iterations as ‘burn–in’ and store the
remainder of the posterior draws forµ in the vectormu.burn . After identify-
ing an appropriate burn–in period foryourMCMC output, use commands simi-
lar to that above to obtain vectors containing posterior draws forµ, log(σ) andξ
after the removal of burn–in (and store them inmu.burn , logsigma.burn
andxi.burn ).

(f) We will now look at the posterior densities of our MCMC draws forµ, σ andξ.
Type

> par(mfrow=c(2,2))
> plot(density(mu.burn))
> plot(density(exp(logsigma.burn)))
> plot(density(xi.burn))

to produce density plots of the posterior draws for the parametersµ, σ and
ξ (note the transformation back toσ by exponentiation of the log(σ) vector).

(g) Find the posterior mean and standard deviation for each of the three GEV pa-
rameters by typing, for example,

> mean(mu.burn) and
> sd(mu.burn)

(h) Now we can obtain the posterior distribution for, say, the 1000–year return level
by using the functionret.level.gev on each of the draws forµ, σ andξ.
We can do this by typing:

> retlevel<-vector(‘numeric’, length(mu.burn))
> for(i in 1:length(retlevel))
+ {
+ retlevel[i]<-ret.level.gev(mu.burn[i], . . .
. . . exp(logsigma.burn[i]),xi.burn[i],1000)
+ }

Now typing

plot(density(retlevel))
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will add a density plot of the posterior for the 1000–year return level to your
panel of plots produced in part (f). Numerical summaries canbe obtained in
a similar fashion to (g), though owing to the (often) severe asymmetry of the
posterior surface for return levels, you may want to usemedian() and not
mean() as a summary of posterior location here.

(i) Now find maximum likelihood estimates forµ, σ, ξ and the 1000–year return
level (see Part 3) and compare these with the results from your Bayesian analy-
sis (compare m.l.e.s with posterior means, for example, andestimated standard
errors with posterior standard deviations).

(j) If you have time, and are interested in this stuff, you could re–run this type of
analysis on the Hartford data.
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