Introduction to Number Theory and Cryptography (MAS3214)

Michael C. White

Newcastle University

2016

글 🕨 🖌 글

Transmitting over an Open Channel

Michael C. White (Newcastle University)

イロト イポト イヨト イヨ

Transmitting over an Open Channel

Alice	Bob
Θ !	Θ?
$\leftarrow \Delta \rightarrow$	$\leftarrow \Box -$
Ţ	Π

 $\neg \rightarrow$ П

イロト イ理ト イヨト イヨト

Transmitting over an Open Channel

Alice	Bob
Θ !	Θ?
$\leftarrow \Delta \rightarrow$	$\leftarrow \Box \rightarrow$
μ	Π

 \rightarrow

イロト イ団ト イヨト イヨト

PLAINTEXT

Transmitting over an Open Channel

Alice	Bob
Θ !	⊖ ?
$\leftarrow \Delta \rightarrow$	$\leftarrow \Box \rightarrow$
ΙL	П

PLAINTEXT

 \Downarrow Encode

ciphertext

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Transmitting over an Open Channel

Alice		Bob	
Θ !		Θ ?	
$\leftarrow \Delta \rightarrow$		$\leftarrow \Box \rightarrow$	
		Π	
PLAINTEXT			
\Downarrow Encode			
	transmission		
ciphertext	\longrightarrow	ciphertext	

イロト イポト イヨト イヨ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Weaknesses

Michael C. White (Newcastle University)

Weaknesses

Bob needs to know how to decipher Alice's message.

- Bob needs to know how to decipher Alice's message.
- Someone else may work out how to decode the message.

Encryption by Shifting Letters

イロト イポト イヨト イヨ

Encryption by Shifting Letters

크

イロト イ団ト イヨト イヨト

Encryption by Shifting Letters

Weaknesses

イロト イ団ト イヨト イヨト

Encryption by Shifting Letters

Weaknesses

• There are only 26 codes to try. [Rot13 is still used.]

イロト イ団ト イヨト イヨト

Encryption by Shifting Letters

Weaknesses

- There are only 26 codes to try. [Rot13 is still used.]
- This is a rather easy process to do backwards. [zyxwvutsr...]

Encryption by Shifting Letters

Weaknesses

- There are only 26 codes to try. [Rot13 is still used.]
- This is a rather easy process to do backwards. [zyxwvutsr...]
- Decode: mpm!

Encryption by Shifting Letters

Weaknesses

- There are only 26 codes to try. [Rot13 is still used.]
- This is a rather easy process to do backwards. [zyxwvutsr...]
- Decode: mpm!

• LOL!

Encryption by Shifting Letters

Weaknesses

- There are only 26 codes to try. [Rot13 is still used.]
- This is a rather easy process to do backwards. [zyxwvutsr...]
- Decode: mpm!

• LOL!

• How can we make this code more difficult to break?

Michael C. White (Newcastle University)

The Permutation Cipher

Encryption by Swapping Letters

• • • • • • • • • • • • •

The Permutation Cipher

Encryption by Swapping Letters

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

There are $26! = 26 \times 25 \times \ldots \times 2 \times 1 \approx 4 \times 10^{26}$ codes to try!

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

There are $26! = 26 \times 25 \times \ldots \times 2 \times 1 \approx 4 \times 10^{26}$ codes to try!

There are $26! = 26 \times 25 \times \ldots \times 2 \times 1 \approx 4 \times 10^{26}$ codes to try!

Weaknesses

• The single letter is probably "A" or "I";

There are $26! = 26 \times 25 \times \ldots \times 2 \times 1 \approx 4 \times 10^{26}$ codes to try!

- The single letter is probably "A" or "I";
- The commonest letter is probably "E";

There are $26! = 26 \times 25 \times \ldots \times 2 \times 1 \approx 4 \times 10^{26}$ codes to try!

- The single letter is probably "A" or "I";
- The commonest letter is probably "E";
- Words are likely to end with "S", if not "E";

There are $26! = 26 \times 25 \times \ldots \times 2 \times 1 \approx 4 \times 10^{26}$ codes to try!

- The single letter is probably "A" or "I";
- The commonest letter is probably "E";
- Words are likely to end with "S", if not "E";
- The commonest (English) letters are: E, T, A, O, I, N, S, H, R, D.

There are $26! = 26 \times 25 \times \ldots \times 2 \times 1 \approx 4 \times 10^{26}$ codes to try!

- The single letter is probably "A" or "I";
- The commonest letter is probably "E";
- Words are likely to end with "S", if not "E";
- The commonest (English) letters are: E, T, A, O, I, N, S, H, R, D.
- We might guess:

There are $26! = 26 \times 25 \times \ldots \times 2 \times 1 \approx 4 \times 10^{26}$ codes to try!

- The single letter is probably "A" or "I";
- The commonest letter is probably "E";
- Words are likely to end with "S", if not "E";
- The commonest (English) letters are: E, T, A, O, I, N, S, H, R, D.
- We might guess:

The Frequency Attack for long messages – Al Kindi

э

• • • • • • • • • • • • •

The Frequency Attack for long messages – Al Kindi

Ι	Т	Ι	S	А	Т	R	U	Т	Η	
b	V	b	0	t	V	р		V	k	

э

• • • • • • • • • • • • •

The Frequency Attack for long messages – Al Kindi

Ι	Τ	Ι	S	Α	Т	R	U	Т	H	
b	V	b	0	t	V	р		V	k	•••

The Frequency Attack for long messages – Al Kindi

Ι	Т	Ι	S	А	Т	R	U	Т	Η	
b	v	b	0	t	v	р	Ι	v	k	

- The commonest letters in English (decreasing order) are:
- E, T, A, O, I, N, S, H, R, D.

The Frequency Attack for long messages – Al Kindi

Ι	Т	Ι	S	А	Т	R	U	Т	Н	•••
b	v	b	0	t	v	р	I	v	k	•••

- The commonest letters in English (decreasing order) are:
- E, T, A, O, I, N, S, H, R, D.
- The commonest encrypted letters (in our full message) are:
- u, v, t, x, b, f, o, k, p, q.

The Frequency Attack for long messages – Al Kindi

Ι	Т	Ι	S	А	Т	R	U	Т	Н	•••
b	v	b	0	t	v	р	I	v	k	•••

- The commonest letters in English (decreasing order) are:
- E, T, A, O, I, N, S, H, R, D.
- The commonest encrypted letters (in our full message) are:
- u, v, t, x, b, f, o, k, p, q.
- Decode: fxvu

The Frequency Attack for long messages – Al Kindi

Ι	Т	Ι	S	Α	Т	R	U	Т	Η	•••
b	v	b	0	t	v	р	I	V	k	•••

- The commonest letters in English (decreasing order) are:
- E, T, A, O, I, <mark>N</mark>, S, H, R, D.
- The commonest encrypted letters (in our full message) are:
- u, v, t, x, b, f, o, k, p, q.
- Decode: fxvu
- NOTE

The Frequency Attack for long messages – Al Kindi

Ι	Т	Ι	S	А	Т	R	U	Т	Н	•••
b	v	b	0	t	v	р	I	v	k	•••

- The commonest letters in English (decreasing order) are:
- E, T, A, O, I, N, S, H, R, D.
- The commonest encrypted letters (in our full message) are:
- u, v, t, x, b, f, o, k, p, q.
- Decode: fxvu
- NOTE: This leads us to guess the following decryption:

Breaking the Permutation Cipher

The Frequency Attack for long messages – Al Kindi

Ι	Т	Ι	S	А	Т	R	U	Т	Η	• • •
b	v	b	0	t	v	р	I	v	k	•••

Weaknesses

- The commonest letters in English (decreasing order) are:
- E, T, A, O, I, N, S, H, R, D.
- The commonest encrypted letters (in our full message) are:
- u, v, t, x, b, f, o, k, p, q.
- Decode: fxvu
- NOTE: This leads us to guess the following decryption:

• IT IS A TR?TH ?NI?ERSA??? A??NO??ED?ED THAT A SIN??E ?AN IN ?OSSESSION O? A ?OOD ?ORT?NE ??ST ?E IN ?ANT O? A ?I?E.

Defending against the frequency attack

Michael C. White (Newcastle University)

イロト イポト イヨト イヨ

Defending against the frequency attack

• Keep changing your code!

< 17 ▶

.

- Keep changing your code!
- If you change the code with every letter it is hard to break.

- Keep changing your code!
- If you change the code with every letter it is hard to break.
- In the Vigenère Cipher your have a 'Codeword', say "ACE".

- Keep changing your code!
- If you change the code with every letter it is hard to break.
- In the Vigenère Cipher your have a 'Codeword', say "ACE".
- The Codeword tells you how to change codes:

- Keep changing your code!
- If you change the code with every letter it is hard to break.
- In the Vigenère Cipher your have a 'Codeword', say "ACE".
- The Codeword tells you how to change codes:
- "ACE" tells us to move letters on by 1, 3, 5, 1, 3, 5, ...

Defending against the frequency attack

- Keep changing your code!
- If you change the code with every letter it is hard to break.
- In the Vigenère Cipher your have a 'Codeword', say "ACE".
- The Codeword tells you how to change codes:
- "ACE" tells us to move letters on by 1, 3, 5, 1, 3, 5, ...

Vigenère Example

Defending against the frequency attack

- Keep changing your code!
- If you change the code with every letter it is hard to break.
- In the Vigenère Cipher your have a 'Codeword', say "ACE".
- The Codeword tells you how to change codes:
- "ACE" tells us to move letters on by 1, 3, 5, 1, 3, 5, ...

Vigenère Example

Defending against the frequency attack

- Keep changing your code!
- If you change the code with every letter it is hard to break.
- In the Vigenère Cipher your have a 'Codeword', say "ACE".
- The Codeword tells you how to change codes:
- "ACE" tells us to move letters on by 1, 3, 5, 1, 3, 5, ...

Vigenère Example

This is harder to decode. However, in this example we just need 3 frequency tables. One for each letter of the Codeword.

Michael C. White (Newcastle University)

Cryptography

Use Random Shifts for each letter

イロト イ団ト イヨト イヨト

Use Random Shifts for each letter

• If your Codeword is long, then the frequency attack is hard.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Use Random Shifts for each letter

- If your Codeword is long, then the frequency attack is hard.
- It is tempting to use a long text, like "The Bible", as your Codeword.

< 4 →

.

Use Random Shifts for each letter

- If your Codeword is long, then the frequency attack is hard.
- It is tempting to use a long text, like "The Bible", as your Codeword.

Vigenère Example

Use Random Shifts for each letter

- If your Codeword is long, then the frequency attack is hard.
- It is tempting to use a long text, like "The Bible", as your Codeword.

Vigenère Example

Use Random Shifts for each letter

- If your Codeword is long, then the frequency attack is hard.
- It is tempting to use a long text, like "The Bible", as your Codeword.

Vigenère Example

BUT, someone might guess your CodeText.

Use Random Shifts for each letter

- If your Codeword is long, then the frequency attack is hard.
- It is tempting to use a long text, like "The Bible", as your Codeword.

Vigenère Example

- BUT, someone might guess your CodeText.
- Better to use random shifts, from a One Time Pad.

Use Random Shifts for each letter

- If your Codeword is long, then the frequency attack is hard.
- It is tempting to use a long text, like "The Bible", as your Codeword.

Vigenère Example

- BUT, someone might guess your CodeText.
- Better to use random shifts, from a One Time Pad.
- How can I securely send something random to you? (like a number in a One Time Pad)

Michael C. White (Newcastle University)

Cryptography

Sending Secret Numbers

Sending Secret Numbers

• How can I tell you how to encrypt a message, without telling you how to decrypt a message?

A D M A A A M M

.

Sending Secret Numbers

• How can I tell you how to encrypt a message, without telling you how to decrypt a message?

Sending Secret Numbers

• How can I tell you how to encrypt a message, without telling you how to decrypt a message?

The (**3**, 100) Cipher

• To send 17 send the last two digits of $17^3 = 17 \times 17 \times 17 = 49113$;

Sending Secret Numbers

• How can I tell you how to encrypt a message, without telling you how to decrypt a message?

- To send 17 send the last two digits of $17^3 = 17 \times 17 \times 17 = 49113$;
- Encode: 17 as the number 13.

Sending Secret Numbers

 How can I tell you how to encrypt a message, without telling you how to decrypt a message?

- To send 17 send the last two digits of $17^3 = 17 \times 17 \times 17 = 49113$;
- Encode: 17 as the number 13.
- The Public Key is (3, 100).

Sending Secret Numbers

 How can I tell you how to encrypt a message, without telling you how to decrypt a message?

- To send 17 send the last two digits of $17^3 = 17 \times 17 \times 17 = 49113$;
- Encode: 17 as the number 13.
- The Public Key is (3, 100).
- It is hard to see how to decode this message.

Sending Secret Numbers

 How can I tell you how to encrypt a message, without telling you how to decrypt a message?

- To send 17 send the last two digits of $17^3 = 17 \times 17 \times 17 = 49113$;
- Encode: 17 as the number 13.
- The Public Key is (3, 100).
- It is hard to see how to decode this message.
- To decode: I compute the last two digits of 13²⁷, [27 is my Secret!]

Sending Secret Numbers

 How can I tell you how to encrypt a message, without telling you how to decrypt a message?

- To send 17 send the last two digits of $17^3 = 17 \times 17 \times 17 = 49113$;
- Encode: 17 as the number 13.
- The Public Key is (3, 100).
- It is hard to see how to decode this message.
- To decode: I compute the last two digits of 13²⁷, [27 is my Secret!]

•
$$13^{27} = (((13)^3)^3)^3) \equiv ((97)^3)^3 \equiv 73^3 \equiv 17.$$

Sending Secret Numbers

 How can I tell you how to encrypt a message, without telling you how to decrypt a message?

The (**3**, 100) Cipher

- To send 17 send the last two digits of $17^3 = 17 \times 17 \times 17 = 49113$;
- Encode: 17 as the number 13.
- The Public Key is (3, 100).
- It is hard to see how to decode this message.
- To decode: I compute the last two digits of 13²⁷, [27 is my Secret!]

•
$$13^{27} = (((13)^3)^3)^3) \equiv ((97)^3)^3 \equiv 73^3 \equiv 17.$$

• Why 27?

Sending Secret Numbers

 How can I tell you how to encrypt a message, without telling you how to decrypt a message?

- To send 17 send the last two digits of $17^3 = 17 \times 17 \times 17 = 49113$;
- Encode: 17 as the number 13.
- The Public Key is (3, 100).
- It is hard to see how to decode this message.
- To decode: I compute the last two digits of 13²⁷, [27 is my Secret!]

•
$$13^{27} = (((13)^3)^3)^3) \equiv ((97)^3)^3 \equiv 73^3 \equiv 17.$$

- Why 27? "Because" $100 = 2^2 \times 5^2$ and
 - ${\color{black}{3\times27}=1+2^1(2-1)5^1(5-1)\times2}.$

Sending Secret Numbers

• How can I tell you how to encrypt a message, without telling you how to decrypt a message?

- To send 17 send the last two digits of $17^3 = 17 \times 17 \times 17 = 49113$;
- Encode: 17 as the number 13.
- The Public Key is (3, 100).
- It is hard to see how to decode this message.
- To decode: I compute the last two digits of 13²⁷, [27 is my Secret!]
- $13^{27} = (((13)^3)^3)^3) \equiv ((97)^3)^3 \equiv 73^3 \equiv 17.$
- Why 27? "Because" $100=2^2\times 5^2$ and
 - $3 \times 27 = 1 + 2^{1}(2 1)5^{1}(5 1) \times 2.$
- In practice we use big numbers, which are hard to factor.

Summary

Michael C. White (Newcastle University)

2

イロト イヨト イヨト イヨト

Summary

• The Caesar Cipher quickly hides a message from plain sight.

< ロ > < 同 > < 回 > < 回 >

- The Caesar Cipher quickly hides a message from plain sight.
- The Permutation Cipher shows that even complicated methods have a weakness whenever there is a pattern.

- The Caesar Cipher quickly hides a message from plain sight.
- The Permutation Cipher shows that even complicated methods have a weakness whenever there is a pattern.
- The Vigenère Cipher built a better cipher, based on Caesar.

- The Caesar Cipher quickly hides a message from plain sight.
- The Permutation Cipher shows that even complicated methods have a weakness whenever there is a pattern.
- The Vigenère Cipher built a better cipher, based on Caesar.
- The One Time Pad is ideal, but hard to put into practice.

- The Caesar Cipher quickly hides a message from plain sight.
- The Permutation Cipher shows that even complicated methods have a weakness whenever there is a pattern.
- The Vigenère Cipher built a better cipher, based on Caesar.
- The One Time Pad is ideal, but hard to put into practice.
- The Public Key Cryptography system allows secure transmission, but really needs a computer to implement.

Summary

- The Caesar Cipher quickly hides a message from plain sight.
- The Permutation Cipher shows that even complicated methods have a weakness whenever there is a pattern.
- The Vigenère Cipher built a better cipher, based on Caesar.
- The One Time Pad is ideal, but hard to put into practice.
- The Public Key Cryptography system allows secure transmission, but really needs a computer to implement.

Summary

- The Caesar Cipher quickly hides a message from plain sight.
- The Permutation Cipher shows that even complicated methods have a weakness whenever there is a pattern.
- The Vigenère Cipher built a better cipher, based on Caesar.
- The One Time Pad is ideal, but hard to put into practice.
- The Public Key Cryptography system allows secure transmission, but really needs a computer to implement.

Further Reading

Come and join me in MAS3214!

Summary

- The Caesar Cipher quickly hides a message from plain sight.
- The Permutation Cipher shows that even complicated methods have a weakness whenever there is a pattern.
- The Vigenère Cipher built a better cipher, based on Caesar.
- The One Time Pad is ideal, but hard to put into practice.
- The Public Key Cryptography system allows secure transmission, but really needs a computer to implement.

- Come and join me in MAS3214!
- More materials are on Blackboard: Example Sheet, and this talk.

Summary

- The Caesar Cipher quickly hides a message from plain sight.
- The Permutation Cipher shows that even complicated methods have a weakness whenever there is a pattern.
- The Vigenère Cipher built a better cipher, based on Caesar.
- The One Time Pad is ideal, but hard to put into practice.
- The Public Key Cryptography system allows secure transmission, but really needs a computer to implement.

- Come and join me in MAS3214!
- More materials are on Blackboard: Example Sheet, and this talk.
- At Newcastle you begin to study Number Theory in your first term.

Summary

- The Caesar Cipher quickly hides a message from plain sight.
- The Permutation Cipher shows that even complicated methods have a weakness whenever there is a pattern.
- The Vigenère Cipher built a better cipher, based on Caesar.
- The One Time Pad is ideal, but hard to put into practice.
- The Public Key Cryptography system allows secure transmission, but really needs a computer to implement.

- Come and join me in MAS3214!
- More materials are on Blackboard: Example Sheet, and this talk.
- At Newcastle you begin to study Number Theory in your first term.
- sgzmj xnt!

Summary

- The Caesar Cipher quickly hides a message from plain sight.
- The Permutation Cipher shows that even complicated methods have a weakness whenever there is a pattern.
- The Vigenère Cipher built a better cipher, based on Caesar.
- The One Time Pad is ideal, but hard to put into practice.
- The Public Key Cryptography system allows secure transmission, but really needs a computer to implement.

- Come and join me in MAS3214!
- More materials are on Blackboard: Example Sheet, and this talk.
- At Newcastle you begin to study Number Theory in your first term.
- sgzmj xnt! ... I mean ... THANK YOU!