
DR L E E FAWC ETT

M I S S AMY CHADW I C K

HOW TO
U S E R W I T H I N
YOUR D E G R E E

N EWCA S T L E UN I V E R S I T Y

Contents

1 Background 3

2 Introduction to R 8

3 Data summaries 27

4 Control Statements and Functions 36

5 Random Number Generation 46

1

Background

Objectives

This chapter will give a description of R and an introduction to the

course.

1.1 History

R is an implementation of S, where S is a programming language that

first appeared in 1976 and was created by John Chambers alongside

colleagues at Bell Laboratories. There are some important differences

between the programmes, however the majority of code written for S

runs unaltered under R.

Ross Ihaka and Robert Gentlemen created R at the University of

Auckland, New Zealand, thus naming the programme partly after their

first names and partly as a play on the name S. A special debt is owed

to John Chambers due to his contributions and encouragement in R’s

early days, and later becoming a member of the R Development Core

Team which currently develops R.

1.2 What is R?

R is a programming language and software environment for statistical

computing and graphics. For example, R is widely used by Google,

IBM, Shell, Thomas Cook, Facebook and other familiar names.

The R language is mostly used by statisticians and data miners for

developing statistical software and analysing data, although it can

also be used as a general matrix calculation toolbox with comparable

benchmark results to many other software packages. It has been shown

in recent polls, surveys and studies that R’s popularity has increased

substantially over recent years.

R uses a command line interface, though several graphical user interfaces

are available. The system provides a wide variety of statistical (linear

and nonlinear modelling, classical statistical tests, time-series analysis,

classification, clustering and others) and graphical techniques.

R is highly extensible through the use of user-submitted libraries

and includes various facilities for data manipulation, calculation and

4 dr lee fawcett miss amy chadwick

graphical display, such as:

• an effective data handling and storage facility;

• a suite of operators for calculations on arrays, in particular matrices;

• a large, coherent, integrated collection of intermediate tools for data

analysis;

• graphical facilities for data analysis and display either on-screen or

on hardcopy;

• quality graphs that can include mathematical symbols and formulae;

• a well-developed, simple and effective programming language which

includes conditionals, loops, user-defined recursive functions and

input and output facilities.

You will use R throughout your degree at Newcastle in various assign-

ments and project work. We will be using RStudio, which is an R IDE

(Integrated development environment).

1.3 Installing R

R and RStudio are installed on all University machines and are available

as Free Software under the terms of the Free Software Foundation’s

General Public License in source code form. It compiles and runs

on a wide variety of UNIX platforms and similar systems (including

FreeBSD and Linux), Windows and MacOS, so you can freely install R

and RStudio on your own computer. See

http://www.ncl.ac.uk/maths/students/teaching/installingr/

for more details.

1.4 Previous computing knowledge

This course is intended to teach you the basics of programming. No

previous programming knowledge is assumed. It is crucial that you

understand all the material in this course and have completed all the

relevant exercises/Numbas tests before September.

1.5 Movie data set

The internet movie database (IMBD), http://imdb.com/, is a website

devoted to collecting movie data supplied by studios and fans. It claims

to be the biggest movie database on the web and is run by amazon.

See

http://imdb.com/help/show_leaf?about

and

http://imdb.com/help/show_leaf?infosource,

http://www.ncl.ac.uk/maths/students/teaching/installingr/
http://imdb.com/
http://imdb.com/help/show_leaf?about
http://imdb.com/help/show_leaf?infosource

how to use r within your degree 5

for more information about http://imdb.com/, including information

about the data collection process. IMDB makes their raw data available

at

http://uk.imdb.com/interfaces/.

We will use a selection of movies from the IMDB as our main dataset

throughout this course to demonstrate some of R’s data manipulation

and graphical capabilities. Movies were selected for inclusion if they

had a known length, had been rated by at least one IMDB user and had

an mpaa (motion picture association of America) rating. The dataset

contains the following fields:

• Title. Title of the movie.

• Year. Year of release.

• Budget. Total budget in US dollars. If the budget isn’t known,

then it is stored as ‘-1’.

• Length. Length in minutes.

• Rating. Average IMDB user rating.

• Votes. Number of IMDB users who rated this movie.

• r1-10. Percentage(to nearest 5%) of users who rated this movie a 1,

..., 10

• mpaa. MPAA rating. A movie is rated based on who it is suitable to

be viewed by, e.g. ‘PG-13’ if a movie should have parental guidance

for children under the age of 13.

• Action, Animation, Comedy, Drama, Documentary, Ro-

mance, Short. Binary variables indicating if movie was classified

as belonging to that genre. A movie can belong to more one genre.

See for example the film Ablaze in Table 1.1.

There are a total of 24 variables and 4847 films. The first few rows

are given in Table 1.1. This, however, is only a subset of the data, the

actual data set contains information on over 50,000 movies.

This dataset lends itself very well to learning how to use R due to

its size and the many different types of variables it contains. We will

be making use of this dataset throughout these notes. The dataset is

available in plain text format at:

www.mas.ncl.ac.uk/∼nlf8/basicR/movies.txt

http://imdb.com/
http://uk.imdb.com/interfaces/

6 dr lee fawcett miss amy chadwick

Voting statistics Movie Genre

Title Year Length Budget Rating Votes r1 . . . r10 mpaa Action Animation Comedy Drama Documentary Romance Short

A.k.a. Cassius 1970 85 -1 5.7 43 4.5 . . . 14.5 PG 0 0 0 0 1 0 0

AKA 2002 123 -1 6.0 335 24.5 . . . 1.5 R 0 0 0 1 0 0 0

Alien Vs. Pred 2004 102 45000000 5.4 14651 4.5 . . . 4.5 PG-13 1 0 0 0 0 0 0

Abandon 2002 99 25000000 4.7 2364 4.5 . . . 4.5 PG-13 0 0 0 1 0 0 0

Abendland 1999 146 -1 5.0 46 14.5 . . . 24.5 R 0 0 0 0 0 0 0

Aberration 1997 93 -1 4.8 149 14.5 . . . 4.5 R 0 0 0 0 0 0 0

Abilene 1999 104 -1 4.9 42 0.0 . . . 24.5 PG 0 0 0 1 0 0 0

Ablaze 2001 97 -1 3.6 98 24.5 . . . 14.5 R 1 0 0 1 0 0 0

Adominable Dr 1971 94 -1 6.7 1547 4.5 . . . 14.5 PG-13 0 0 0 0 0 0 0

About Adam 2000 105 -1 6.4 1303 4.5 . . . 4.5 R 0 0 1 0 0 1 0

Table 1.1: The first ten rows of the

movie data set. Credit: This data
set was initially constructed by Hadley
Wickham at http://had.co.nz/

Conclusion

You should now:

• be able to give a brief description of the statistical software R;

• know the background of R;

• understand why R is used;

• know how to install R on your own computer;

• recognise the movie data set that we will be using throughout the

course.

Interactive learning

You should work through this booklet ”interactively”, working through all the R code yourselves

at the same time as it is presented, no matter how easy it looks. You should look out for coloured

boxes too:

• red indicates you should complete a CBA (Computer Based Assessment that can be found on

the webpage);

• blue indicates you should complete a Practical (short worksheet of questions designed to

practice what you have read and challenge you - also found on the webpage with solutions.)

There is also an online book available for a more thorough description of things, available from

our webpage: https://cran.r-project.org/doc/manuals/R-intro.pdf

http://had.co.nz/

how to use r within your degree 7

Amy

2

Introduction to R

Objectives

In this chapter you will learn about the basics of R. To make the most

of these notes you need to try all the R code as you read. To do this

please install R on your own machine or use a university computer, see

Section 1.3 for more information. If you have any difficulty in doing this
you can contact either:

• Christian Lawson-Perfect at

christian.perfect@newcastle.ac.uk ;

• Christopher Graham at
Christopher.Graham@newcastle.ac.uk.

2.1 Accessing R

Assuming you are on a University machine, RStudio can be found via

Start > All Programs > Statistical Software > R > RStudio.

Once opened, select File > New > R Script, or Hold Ctrl+Shift+N.

This opens an R Script document in the top left hand corner. Although

you don’t necessarily need an R Script, it makes life easier as you can

edit and re-run code from the script. Any R code written directly onto

the ‘Console’ (bottom left-hand corner) section cannot be rewritten.

Figure 2.1: Print screen of R: the

top left and bottom left hand cor-

ners are the R Script and Console
which you will mainly be using; the

top right hand corner represents the

workspace/history section; and the bot-
tom right hand corner shows your

files/plots/the help section.

how to use r within your degree 9

2.2 A simple R session

At its most basic, R can be used as a calculator. You can type calcu-

lations into your R script document, highlight them and either click

‘Run’ (in the top right corner of your RScript) or Ctrl+Enter. You

will then see them run in blue through the console below, with the

corresponding answers in black. This is show in Figure 2.1.

Table 2.1 includes some basic maths symbols. Remember the use of

brackets can be important when completing some longer calculations,

in the same way as they are used on your calculators.

Symbol Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

^ To the power of

exp() Exponential

log() Logarithm (base e)

%% Modulus

Table 2.1: A table showing basic math

symbols that you will use within R

The modulus operator returns the remainder when the first number is

divided by the second. This seemingly simple operator is actually a

very powerful tool for mathematicians, especially those who specialize

in Number Theory. It can also be very useful for data manipulation in

R and is probably most often seen written as ”mod”, e.g. 4 mod 3.

The # symbol is used for commenting. We use comments to describe

what a piece of code is doing. That way, when we look at the code in R essentially ”ignores” any line that

starts with #.a few months/years we have a record of what our code does and why

it was written. This can be especially useful when it comes to your

assignments to label questions or write your own notes.

Now that we have explained the use of RScript, the following notes

shall be written as though directly using the console in R. When using

the console, type your calculation and click ‘Enter’ to run it. You will

see the same thing happens as when using the RScript, except now it

isn’t as easy to go back and edit what you have done. You can edit in the console window -
if you click the up-arrow, it takes you

back to your last line of code and you
can edit and re-run.

Remember whilst following these notes you should be trying to run

each example code yourself.

We recommend always using RScript unless fully confident. The > symbol is the command prompt

in the R console, the point at which you

can type your code. You don’t need
the > symbol if you are typing in your
RScript. When the code is executed R

will generate the > symbol for you.

Here are some simple R calculation examples:

> #This is a comment and is ignored by R

> 5*5

[1] 25

> 10.2/6

[1] 1.7

10 dr lee fawcett miss amy chadwick

and more ‘advanced’ operations:

> #Powers

> 2^3

[1] 8

> #Exponential

> exp(1.5)

[1] 4.481689

> #Logs

> log(10)

[1] 2.302585

> #Modulus

> 4 %% 3

[1] 1

The [1] tells you how many items you have in your output up to, and

including, the first element in that line.

2.3 Movie data set

The movie data set considered at the end of Chapter 1 will be used

throughout these notes. Now that you are in RStudio you will need to

install the movies database so that you can view it. To do this you will

first need to download the associated R package for this course:

> install.packages("mas1343",repos="http://R-Forge.R-project.org",type="source")

The downloaded source packages are in

'C:\Users\B2017960\AppData\Local\Temp\Rtmpqierxe\downloaded_packages'

> #To load the package use

> library(mas1343)

Packages are collections of R functions, data, and compiled code in a

well-defined format. The directory where packages are stored is called

the library. R comes with a standard set of packages. Others are

available for download and installation. Once installed, they have to

be loaded into the session to be used.

We are using a package here to allow easy access to datasets and

commands that have been specifically set-up for use in this course. The

package is called “mas1343” after an old stage 1 R course that first year

single honours Mathematics/Statistics students were previously taught.

how to use r within your degree 11

To load the movies dataset, type: The example only uses budget and

length but you can use the data() func-
tion to extract any column/row you

want.
> data(movies)

> #This extracts the movies dataset from the package

> data(Budget)

> #This extracts the budgets column from the full movies dataset.

> data(Length)

> #This extracts the length column from the full movies dataset.

You can view the first couple of movies by typing: See Table 1.1 in Chapter 1.

> head(movies)

At the start of each new R session you will have to type the

library(mas1343) and data(movies) commands - but you won’t

have to use install.packages each time.

2.4 Assignment operations

In R, we assign values to an object using the equals sign. For example:

> x = 5

> x = x + 1

> x

[1] 6

Notice that when we type x = 5, R doesn’t display or print any output

to the screen. Don’t confuse this with R not doing anything, if there is

no error message then R has always done something! If we want to see

what value has been assigned to the variable we can type x and click

enter. Equivalently, we can surround the expression with brackets. For

example:

> (x = 2*x)

[1] 12

You can also use the <- operator for assignment. This is, for almost

all situations, identical to the = operator.

This is also where the ‘Workspace’ section in the top right hand corner

becomes useful. R remembers all variables you have assigned, until you

overwrite them. So by looking in your ‘Workspace’ you can quickly

see what variables you have in R at the moment and what they are

assigned to.

You can also view available variables with the ls() command:

> #You will get a different list of variables

> ls()

[1] "x"

12 dr lee fawcett miss amy chadwick

To delete a variable in R, we use the rm function. For example:

> x = 0; y = 1; z = 2;

> ls()

[1] "x" "y" "z"

> #Remove x

> rm(x)

> ls()

[1] "y" "z"

See Figure 2.2 which shows a print screen of the use of these functions

in the ‘Console’ and how they affect the ‘Workspace’. We can remove

everything in the ‘Workspace’ using rm(list=ls()):

> #Remove everything in your workspace

> rm(list=ls())

We recommend running rm(list=ls()) at the beginning of each

new R session. This stops you relying on previously stored variables

and makes your code more portable. You can also remove everything in

the ‘Workspace’ by clicking the brush symbol next to ‘Import Dataset’,

see the right hand corner of Figure 2.2.

Figure 2.2: Print screen of R using the

ls() and rm(x) commands. You can
see what is happening in the ‘Console’
in the bottom left hand corner. Notice

how the ‘Workspace’ in the top right
hand corner shows the variables.

Computer Based Assessments

You should now take the opportunity to complete the Computer Based Assessment (CBA 1)

which will cover the material you have read so far. We would advise not continuing with the

material until you are confident with all the questions covered in CBA 1.

how to use r within your degree 13

2.5 Data types

R has a variety of data types: Notice how in the doubles section R

displays the value as an integer, with-
out the decimal point, if it has no val-
ues after the decimal point.

> #Logicals

> #Just return TRUE or FALSE nothing else

> (v = TRUE)

[1] TRUE

> #characters

> #Usually (but not always) non-numeric values

> #always entered surrounded by quotation marks

> (w = "fred")

[1] "fred"

> #doubles

> #A numeric value, any real number

> (x = 5.0)

[1] 5

and also some “special” data types:

> (y = 5/0) #infinity

[1] Inf

> (z = y-y) #Not a number

[1] NaN

Another important data type in R is NA (“Not Available.”) This is used

to represent missing values. A list of data types is given in Table 2.2.

Type Example 1 Example 2 Example 3 Example 4

Doubles 2 3.1242 -45.6 4e-10

Logicals/Boolean TRUE FALSE

Characters/String “FRED” “x” “Male” “TRUE”

Infinity Inf 5/0 Table 2.2: Summary of data types in

R.

14 dr lee fawcett miss amy chadwick

2.6 Vectors

Vectors are the most basic of all data structures, but are used in almost

all R code. An R vector contains n values of the same type, where n The c command stands for “concate-

nate”, and is a built-in function used
to create a vector. Therefore, it is wise
to avoid assigning any values to c -
doing so can over-write such built-in

functions!

can be zero. For example:

> c(0, 1, 2, 3, 4, 5)

[1] 0 1 2 3 4 5

> (my_first_vec = c(0, 1, 2, 3, 4, 5))

[1] 0 1 2 3 4 5

> (my_second_vec = c("Male", "Female", "Male"))

[1] "Male" "Female" "Male"

In the above code, we create a vector of doubles. Notice how R

then shows you your vector. We then assigned the vector to the variable

my_first_vec. Now whenever we type my_first_vec it will represent

our vector of doubles. Notice how this now appears in your workspace.

We can create vectors of any data type. For example, my_second_vec

is a vector of characters.

In R, when we type:

> x = 5; y = "Fred"

we have actually created vectors of doubles and characters of length

one (when n = 1). There are special functions in R to determine the

variable type:

> x = 5

> is.double(x)

[1] TRUE

> is.character(x)

[1] FALSE

> is.vector(x)

[1] TRUE

To determine the length of a vector in R, we use the length function:

> length(my_first_vec)

[1] 6

> length(my_second_vec)

[1] 3

how to use r within your degree 15

To create sequences of numbers we use the seq command. For example:

> (x1 = seq(1, 6))

[1] 1 2 3 4 5 6

> (x2 = seq(-4, 4, by=2))

[1] -4 -2 0 2 4

Table 2.3 summarises these basic R functions, as well as giving a few

extra ones which you might find useful.

Command description Example Result

Length length(x) 4

Reverse order rev(x) 3,5,5,1

Sort sort(x) 1,3,5,5

Sum sum(x) 14

Extract unique elements unique(x) 1,5,3

Indices of particular elements which(x==5) 2,3

Table 2.3: Useful vector functions. In
the examples, x = c(1,5,5,3). Check
the associated R help for further infor-
mation.

2.6.1 Vector operations

When our data is in vector structure, we can apply standard operations

to the entire vector. For example:

> (x = seq(-4, 4))

[1] -4 -3 -2 -1 0 1 2 3 4

> x*x;

[1] 16 9 4 1 0 1 4 9 16

> x - 5

[1] -9 -8 -7 -6 -5 -4 -3 -2 -1

> x + x

[1] -8 -6 -4 -2 0 2 4 6 8

So we can treat our vector in the same way we treated numbers in

section 2.2 and complete basic calculations with it.

16 dr lee fawcett miss amy chadwick

2.6.2 Extracting elements from vectors

R has a number of useful methods that we use to extract subsets of

our data. For example to pick out particular elements:

> my_first_vec[2]

[1] 1

> my_second_vec[2:3]

[1] "Female" "Male"

> my_first_vec[4:2]

[1] 3 2 1

We see that the first line of R code picks out the second element of

the vector; the second line of R code picks out the second and third;

whereas the third line of R code picks out the fourth to second elements

in the order specified.

We can also use other arguments. For example to remove the last entry

in the vector, we use the length function that we saw earlier:

> l = length(my_first_vec)

> #Notice the brackets!

> my_first_vec[1:(l-1)]

[1] 0 1 2 3 4

We determine the length of the vector using the length function and

select particular elements using the [·] operator.

Computer Based Assessments

You should now take the opportunity to complete the Computer Based Assessments (CBA 2a

and CBA 2b) which will cover the material you have read so far. We would advise not continuing

with the material until you are confident with all the questions covered.

how to use r within your degree 17

2.7 Logical vectors

R supports the logical elements: TRUE and FALSE. Boolean algebra tells

us how to evaluate the truth of compound statements. Table 2.4 gives

a summary of R operations. For example, Reading !A as NOT A, we see that
because A has been assigned as TRUE,
!A (NOT A) must be FALSE.

Read A & B as A AND B.
Read A | B as A OR B.

> A = TRUE; B = FALSE

> !A

[1] FALSE

> !B

[1] TRUE

> A & B

[1] FALSE

> A | B

[1] TRUE

Boolean A B Ā B̄ A ∩ B A ∪ B
R A B !A !B A & B A | B

TRUE TRUE FALSE FALSE TRUE TRUE

TRUE FALSE FALSE TRUE FALSE TRUE

FALSE TRUE TRUE FALSE FALSE TRUE

FALSE FALSE TRUE TRUE FALSE FALSE

Table 2.4: Truth table for Boolean op-

erations.

2.7.1 Using logicals for sub-setting vectors

We can construct vectors of logical operators and use them to take

subsets of vectors. For example:

> (logic1 = c(TRUE, FALSE, TRUE, FALSE))

[1] TRUE FALSE TRUE FALSE

> (vec1 = seq(1, 4))

[1] 1 2 3 4

> vec1[logic1]

[1] 1 3

We can see in this example that our logic1 vector is sub setting

only the numbers in the sequence that relate to the TRUE elements. So

we include 1 and 3. We remove 2 and 4 because they correspond to

the FALSE elements in the logic1 vector.

18 dr lee fawcett miss amy chadwick

2.7.2 Relational Operators

When programming it is often necessary to test relations for equality

and inequality. To do this in R we use the relation operators. First

let’s define some variables:

> x = 5; y = 7

To test for equality we use ==:

> x == 5 #Does x = 5?

[1] TRUE

> x == y #Does x = y

[1] FALSE

So in the first line of R code we are asking R if the assigned x is equal to

5, and R returns a TRUE/FALSE answer. Similarly, to test for inequality

we use !=:

> x != 5 #Or !(x==5)

[1] FALSE

> y != x

[1] TRUE

There are also commands for greater/less than:

> y > 6 #Is y > 6?

[1] TRUE

> x >= 5 #Is x greater than or equal to 5?

[1] TRUE

> x <= y #Is x less than or equal to y?

[1] TRUE

how to use r within your degree 19

Table 2.5 gives a summary of the commands.

Operator Tests for Example Result

== Equality x == 5 TRUE

! = Inequality x != 5 FALSE

< Less than x < 5 FALSE

<= Less or equal x <= 5 TRUE

> Greater x > 5 FALSE

>= Greater or equal x >= 5 TRUE

Table 2.5: Summary of R relational
operators. The example is for x = 5.

We can also apply these techniques to vectors. For example:

> #Generates a sequence

> (vec2 = seq(0, 10, by=2.5))

[1] 0.0 2.5 5.0 7.5 10.0

> #Asks if the numbers are greater than 3

> vec2 > 3

[1] FALSE FALSE TRUE TRUE TRUE

> #Asks if the numbers are less than 9

> vec2 < 9

[1] TRUE TRUE TRUE TRUE FALSE

> #Asks if the numbers are between 3 and 9 (exclusively)

> (vec2 > 3) & (vec2 < 9)

[1] FALSE FALSE TRUE TRUE FALSE

We can see R has considered each number in the vector in turn and

returned logicals determining whether or not it is greater than three/less

than nine/between the two.

We can also combine logical operators:

> vec2 > 3

[1] FALSE FALSE TRUE TRUE TRUE

> !(vec2 > 3)

[1] TRUE TRUE FALSE FALSE FALSE

20 dr lee fawcett miss amy chadwick

2.7.3 Vector Partitions

We can construct vectors of logical operators and use them to take

subsets of vectors. For example:

> (logic1 = c(TRUE, FALSE, TRUE, FALSE))

[1] TRUE FALSE TRUE FALSE

> (vec1 = seq(1, 4))

[1] 1 2 3 4

> vec1[logic1]

[1] 1 3

> vec2

[1] 0.0 2.5 5.0 7.5 10.0

> vec2 > 3 & vec2 < 9

[1] FALSE FALSE TRUE TRUE FALSE

> # So...

> vec2[vec2 > 3 & vec2 < 9]

[1] 5.0 7.5

So you can see in the final line that R has applied whether or not the

numbers are between three and nine, to the vector, to then return the

actual numbers that are.

Using relational operators allows us to extract subsets of data very

easily. Consider the movie budgets: Remember from Section 2.3 that to

load the movie budgets, use the follow-
ing commands:

library(mas1343);

data(Budget);

data(Length).

> length(Budget)

[1] 4847

To select movies where the budget is known, we use the following

command:

> non_zero_b = Budget[Budget != -1]

> length(non_zero_b)

[1] 1785

Remember, for unknown budgets the data set has stored ‘-1’, so the

R code above is selecting known budgets from the budget vector by

selecting all those that aren’t ‘-1’. The last line shows the length of

this non zero budget vector, and you can see a substantial amount have

been removed.

how to use r within your degree 21

In the same way, we can select movies where the movie length is greater

than 60 mins but shorter than 90 mins.

> m_l = Length[Length > 60 & Length < 90]

2.8 Data frames

A data frame is a special kind of object. We use data frames for storing

and managing data sets that have a rectangular structure. Typically

the rows correspond to cases and the columns to variables. The crucial

difference between a data frame and a matrix is that all values in a

matrix must be of the same type. The next code segment constructs a

simple data frame.

First, we construct three vectors:

> age = c(24, 26, 25, 21)

> sex = c("Male", "Female", "Male", "Female")

> respond = c(TRUE, FALSE, FALSE, FALSE)

Then we combine them using the data.frame function:

> (df1 = data.frame(age=age, gender=sex, respond=respond))

age gender respond

1 24 Male TRUE

2 26 Female FALSE

3 25 Male FALSE

4 21 Female FALSE

The data frame we have named df1 has three columns and four rows.

Therefore this represents, say, four individuals. Each of the four in-

dividuals has their information stored with their ages, genders and

response in each of the corresponding columns.

The use of a data frame is useful in this case because a matrix would not

be able to store both doubles (age) and characters (gender). Once

we put our data into a data frame, then data manipulation is easier.

To calculate the dimensions of a data frame we use dim:

> #Dimensions of the data frame

> dim(df1)#This returns a vector

[1] 4 3

To extract the first column we use square brackets, say if we wanted

all the ‘ages’:

> #Extract the first column

> df1[,1] #Another vector

[1] 24 26 25 21

22 dr lee fawcett miss amy chadwick

Similarly, we can get the first row, say if we wanted all of one individual’s

information:

> df1[1,] #Extract the first row

age gender respond

1 24 Male TRUE

The column names are also easily manipulated:

> colnames(df1) #A vector of characters

[1] "age" "gender" "respond"

> #We can easily change the column names

> (colnames(df1) = c("Age", "Sex", "Respond"))

[1] "Age" "Sex" "Respond"

When we download the movies data set, we automatically create a See section 1.5 and section 2.3

data frame:

> #If you have started a new session since last time remember to type:

> library(mas1343)

> data(movies)

> #Ask R if we have a dataframe

> is.data.frame(movies)

[1] TRUE

> #View it's dimensions

> dim(movies)

[1] 4847 24

> colnames(movies)[1:4]

[1] "Title" "Year" "Length" "Budget"

> #Extract the 4061st row and columns 1 to 4

> movies[4061, 1:4]

Title Year Length Budget

4061 Star Wars: Episode I - The Phantom Menace 1999 133 1.15e+08

We can see above that we have selected the 4061st movie and the first

four columns of its information.

how to use r within your degree 23

2.8.1 Subsets of data frames

We can also retrieve subsets from the data frame. For example, if we

wanted only female responses, then:

> (female_only = df1$Sex=="Female")

[1] FALSE TRUE FALSE TRUE

> (df2 = df1[female_only,])

Age Sex Respond

2 26 Female FALSE

4 21 Female FALSE

The $ symbol is used to ask R about a part of a data frame, so the

first line asks whether responses in the Sex column are ”Female”, thus

returning TRUE/FALSE statements. We then define our new data We can only use the $ symbol if the

dataframe has column headingsframe as being the responses from df1 that had TRUE responses.

Note the text is before the colon in the square brackets, as we are

dealing with the columns.

In the same way we can do this to retrieve subsets of people 25 and

over:

> #Greater than or equal to 25

> over_25 = df1$Age>=25

> (df3 = df1[over_25,])

Age Sex Respond

2 26 Female FALSE

3 25 Male FALSE

2.8.2 Example: movie data

We can select movies where the budget is greater than $100,000:

> # movies$Budget > 100000 is a logical vector

> # Select rows

> m1 = movies[movies$Budget > 100000,]

> dim(m1)

[1] 1738 24

or movies that cost more than $100,000 but are not R rated:

> m2 = movies[movies$Budget > 100000

+ & movies$mpaa != "R",]

> dim(m2)

[1] 727 24

In the above code we have shown the dimensions of the new data frame

each time, and you can see these decrease as the conditions we want

increase.

24 dr lee fawcett miss amy chadwick

Using the & symbol allows us to select movies that fit both conditions.

Similarly, we can select movies that fit either condition or both using

|, for example, movies that are either PG or PG-13:

> m3 = movies[

+ movies$mpaa == "PG" | movies$mpaa == "PG-13",]

> dim(m3)

[1] 1515 24

how to use r within your degree 25

Conclusion

You should now be able to perform some of the basic commands in R

including:

• simple and more complicated calculations;

• assignment operations;

• identifying different data types;

• use of vectors and logical vectors, their operations, extracting ele-

ments, relational operators and vector partitions;

• simple manipulation of data frames and their subsets.

Practicals

You should now complete Practical 1 as this covers material up to this point, including more

complex questions on vectors and data frames.

26 dr lee fawcett miss amy chadwick

amy

3

Data summaries

Objectives

This chapter will be split into two main sections, the first will give a

brief overview of how R can be used to find summary statistics using

numerical methods. Before you begin this chapter it may be useful for

you to remind yourself of how to complete the following calculations

by hand or on a scientific calculator:

• sample mean;

• sample median;

• sample mode;

• range;

• sample variance and standard deviation;

• quartiles and the interquartile range.

This chapter will then cover graphical presentation of data. Graphical

displays of data can be very useful for showing the main features of a

data set. The appropriate form of graph depends on the nature of the

variables being displayed and what aspects are to be shown. However it

should always be borne in mind that the object is to provide a clear and

truthful representation of the data, not to distort and not to impress

with unnecessary “fancy” features. There are loads of different types of

plots R can do, we are just going to focus on the most commonly-used.

3.1 Numerical Summaries

3.1.1 Sample mean

One of the most important and widely used measures of location is the

(arithmetic) mean:

x̄ =
x1 + x2 + . . . + xn

n
=

1
n

n

∑
i=1

xi .

So if our data set was {0, 3, 2, 0}, then n = 4. Hence,

x̄ =
1
n

n

∑
i=1

xi =
0 + 3 + 2 + 0

4
= 1.25 .

28 dr lee fawcett miss amy chadwick

3.1.2 Sample median

The sample median is the middle observation when the data are ranked

in ascending order. Denote the ranked observations as x(1), x(2), . . . , x(n).

The sample median is defined as: Remember that x(n+1)/2 is the

(n + 1)/2th ordered observation.

Sample median =

x(n+1)/2, n odd;

1
2 x(n/2) + 1

2 x(n/2+1), n even .

The median is more robust than the sample mean, but has less useful

mathematical properties.

For our simple data set {0, 3, 2, 0}, to calculate the median we

re-order it to: {0, 0, 2, 3}; then take the average of the middle two

observations, to get 1.

3.1.3 Sample mode

The mode is the value which occurs with the greatest frequency. It Warning: in R the function mode

doesn’t give you the sample mode. Use
table instead.

only makes sense to calculate or use it with discrete data. In R we use

the table function to calculate the mode.

3.1.4 Range

The range is easy to calculate. It is simply the largest minus the

smallest. When you get a new data set, calculat-
ing the range is useful when checking
for obvious data-inputting errors.

Range = x(n) − x(1) .

So for our data set of {0, 3, 2, 0}, the range is 3− 0 = 3. It is very

useful for data checking purposes, but in general it’s not very robust. Obviously, the range can be distorted
by outliers or extreme observations.

3.1.5 Sample variance and standard deviation
In statistics, the mean and variance

are used most often. This is mainly
because they have nice mathematical

properties, unlike the median, say.

The sample variance, s2, is defined as

s2 =
1

n− 1

n

∑
i=1

(xi − x̄)2

=
1

(n− 1)

{(
n

∑
i=1

x2
i

)
− nx̄2

}
.

The second formula is easier for calculations. So for our data set, The divisor is n− 1 rather than n in or-

der to correct for the bias which occurs
because we are measuring deviations
from the sample mean rather than the

“true” mean of the population we are
sampling from.

{0, 3, 2, 0}, we have

4

∑
i=1

x2
i = 02 + 32 + 22 + 02 = 13.

So:

s2 =
1

n− 1

{(
n

∑
i=1

x2
i

)
− nx̄2

}
=

1
3

(
13− 4× 1.252

)
= 2.25.

The sample standard deviation, s, is the square root of the sample

variance, i.e. for our toy example s =
√

2.25 = 1.5. The standard deviation is preferred as
a summary measure as it is in the units
of the original data. However, it is of-

ten easier from a theoretical perspec-
tive to work with variances.

how to use r within your degree 29

3.1.6 Using R for basic numerical summaries

We can easily use R to calculate summary statistics for any vector.

R has lots of built-in ”intrinsic” functions to do basic statistics, some

of which will be demonstrated here. Try running the following code

yourself in R whilst calculating the summary statistics yourself by hand

to check you get the same result.

> #creates a vector

> x = c(1,2,3,3,4,5)

> #calculates the mean

> mean(x)

[1] 3

> #calculates the median

> median(x)

[1] 3

> #calculates the standard deviation

> sd(x)

[1] 1.414214

> #calculates the variance

> var(x)

[1] 2

3.1.7 Numerical summaries for the movie data set

For the movie data, we can easily use R to calculate the summary

statistics. Section 1.5 and Section 2.3. If you have

started a new session since last time
remember to type:

library(mas1343);

data(movies);
data(Budget).

To calculate the mean and median, we use the mean and median func-

tions:

> mean(Budget)

[1] 10286893

> median(Budget)

[1] -1

Notice that the budget mean and median are substantially different . . .

why?

We can repeat these calculations to get more sensible results by removing

all the movies with unknown budgets. R uses notation for standard form for

very large/small numbers. You can see

this in the result for the median.> #Start by creating a vector of the budgets removing `-1'
> non_zero_b=Budget[Budget != -1]

> mean(non_zero_b)

[1] 27933093

30 dr lee fawcett miss amy chadwick

> median(non_zero_b)

[1] 1.6e+07

We can also calculate measures of spread:

> range(non_zero_b)

[1] 6e+03 2e+08

> var(non_zero_b)

[1] 9.487355e+14

> sd(non_zero_b)

[1] 30801550

To get the quartiles from R we use the quantile command, i.e. Note the default in R gives you a

slightly different quartile range, i.e. if

you don’t enter the type=6 argument.
As n→ ∞, the different quartile func-
tions converge. The ”type=6” argu-
ment gives the quartiles that are used

in most Statistics modules

> quantile(movies$Rating, type=6)

0% 25% 50% 75% 100%

1.0 4.6 5.7 6.6 9.1

> summary(movies$Rating, type=6)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 4.600 5.700 5.523 6.600 9.100

> #Can see the IQR for movie ratings is 6.6-4.6 = 2.

Command Comment Example

mean Calculates the mean of a vector mean(x)

median Calculates the median of a vector median(x)

sd Calculates the standard deviation of a vector sd(x)

var Calculates the variance of a vector var(x)

quantile The vector quartiles. Make sure you use type=6 quantile(x, type=6)

range Calculates the vector range range(x)

summary Calculates the quartiles summary(x)

However, it doesn’t use type=6 quartiles.

BUT you can use summary(x, type=6)

Table 3.1: Summary of R commands

so far this chapter.

Computer Based Assessments

You should now take the opportunity to complete the Computer Based Assessment (CBA 3)

which will cover the material you have read so far. We would advise not continuing with the

material until you are confident with all the questions covered.

how to use r within your degree 31

3.2 Graphical summaries

3.2.1 Qualitative data: bar charts

The most useful way to display qualitative data is usually with a bar

chart. The length of each bar is proportional to the frequency of the

corresponding value of the variable in the sample of data. Note that the

widths of the bars should be equal to avoid giving a false impression,

as should the width between bars.

Figure 3.1: Barchart of the MPAA rat-

ings for 4847 films

To create Figure 3.1 in R we use the table command...

> table(movies$mpaa)

NC-17 PG PG-13 R

16 526 989 3316

... inside the barplot function:

> barplot(table(movies$mpaa), xlab="MPAA Rating",

+ ylab="Frequency", border = "black",

+ col="mistyrose")

In the above code we have set the colours of the bars and borders, you

can do these whichever colours you like. Type colours() into R to get a list of

colours.
You can change the x-axis label and the y-axis label by using the

codes xlab="" and ylab="" respectively, including the label you want

between the speech marks.

It is important that you always include the speech marks. You can also

include an appropriate title using the code main="", with the title in

between the speech marks.

Remember to load the data first!

AND ALWAYS LABEL YOUR AXES!

3.2.2 Histograms

To represent the distribution of a sample of values from a continuous

variable we can use a histogram. The range of values of the variable

is divided into intervals, known as classes or bins, and the frequencies

in classes are represented by columns. As the variable is continuous,

there are no gaps between neighbouring columns, unlike a bar chart. Unless, of course, a particular class has
zero frequencyNote also that, strictly speaking, it is the area of the column which is

proportional to the frequency, not the height. The reason for this is

that columns need not be of the same width. Most computer packages,

and reports/publications using histograms, tend to use columns of the

same width. However, this default can be overridden in R if you really

want to do this.

When dealing with densities (relative frequency), we can easily work

out the height using this formula:

Height =
frequency

n× Bin-width
.

32 dr lee fawcett miss amy chadwick

When the y-axis is labelled with density or relative frequencies, the area

under the histogram is one. Bin widths should be chosen so that you

get a good idea of the distribution of the data, without being swamped

by random variation.

Figure 3.2: Histogram of movie bud-

gets.

There are various different ways of ”defining” the histogram, accord-

ing to number of bars or the width of the bars. The default is usually

good enough, although this can be changed. For more information see

the online book:

https://cran.r-project.org/doc/manuals/R-intro.pdf.

To generate Figure 3.2 in R we use the following commands:

> hist(movies$Budget, col="grey",

+ main="Mean film budget",

+ freq=FALSE, xlab="Budget ($)")

Figure 3.3: Box and whisker plots
movie length split according to mpaa
rating and whether the film was a ro-
mance.

3.2.3 Box and whisker plots

A box and whisker plot, often referred to simply as a boxplot, is another

way to represent continuous data. This kind of plot is particularly useful

for comparing two or more groups, by placing the boxplots side-by-side.

Figure 3.3 and figure 3.4 shows boxplots of film length for different

categories of film.

how to use r within your degree 33

The central bar in the “box” is the sample median. The top and bottom

of the box represent the upper and lower sample quartiles, respectively.

Just as the median represents the 50% point of the data, the lower and

upper quartiles represent the 25% and 75% points respectively.

The lower whisker is drawn from the lower end of the box to the smallest

value that is no smaller than 1.5IQR below the lower quartile. Similarly,

the upper whisker is drawn from the middle of the upper end of the

box to the largest value that is no larger than 1.5IQR above the upper

quantile. Points outside the whiskers are classified as outliers.

Figure 3.4: Box and whisker plots of
(a) film length (b) film length split ac-

cording to the mpaa rating.

To do this in R we use the following commands:

> #Figures 3.4

> par(mfrow=c(2, 1))

> boxplot(movies$Length, ylab="Film length",

+boxplotcol="bisque")

> boxplot(movies$Length ∼ movies$mpaa, ylab="Film length",

+boxplot col="bisque")

> #Figure 3.3

> boxplot(movies$Length ∼ movies$mpaa + movies$Romance,

+boxplot ylab="Film length")

The first line is used to plot more than one plot at the same time. So

the first number represents how many rows of plots and the second

number how many columns. Thus creating Figure 3.4 as one image

involving two plots. This is useful when you are wanting to compare

several plots.

Practicals

You should now complete Practical 2 which involves plotting and representing data from The

TV show “The Big Bang Theory.”

34 dr lee fawcett miss amy chadwick

Conclusion

You should now easily be able to use R to calculate summary statistics

and be able to create graphical presentations of data in R using:

• bar charts;

• histograms;

• box and whisker plots (boxplots).

Command Comment Example

table Contingency table table(x)

barplot Generate a bar chart barplot(table(x))

hist Histogram hist

plot Scatter plot. See Practical 2. plot(x, y)

points Add points to a plot. See Practical 2. points(x,y)

lines Add lines to a plot. See Practical 2. lines(x,y)

boxplot Box and whiskers plot boxplot(x)

Table 3.2: Summary of R commands

for the remainder of this chapter.

how to use r within your degree 35

amy

4

Control Statements and Functions

Objectives

This section will discuss writing your own functions and using control

statements.

4.1 Functions

A very powerful aspect of R is that it is relatively easy to write your

own functions. Functions can take inputs (or arguments) and return

a single value. However, this single value could be a list, vector or

matrix, for example, containing many values. Let’s look at some simple

functions.

4.1.1 Basic functions

This function takes in a single argument x and returns x2:

> Fun1 = function(x) {

+ return (x*x)

+ }

The key elements in the function call are:

• The word function;

• The brackets () which enclose the argument list.

• A sequence of statements in curly braces { }.

• A return statement.

The above code transforms the argument (in this case x) by following

the statements in the curly braces and R gives back the argument in

the return statement.

how to use r within your degree 37

Once we have defined our function, calling it what we like, we call it in

the following manner: To ”call” a function means you ”run”
the function or perhaps ”invoke” the

function.> Fun1(5)

[1] 25

> y = Fun1(10)

> y

[1] 100

> #We can also pass a vector

> z = c(1, 2, 3, 4)

> Fun1(z)

[1] 1 4 9 16

You can see in the above code that this also works for vectors.

Of course, the old saying ‘garbage in, garbage out’ is true:

> Fun1()

Error in Fun1() : argument "x" is missing, with no default

> Fun1("5")

Error in x * x : non-numeric argument to binary operator

The error messages give you an idea of what went wrong. Other

variations to this simple function are:

> #Default argument

> Fun2 = function(x=1) {

+ return (x*x)

+ }

> Fun2()

[1] 1

> Fun2(4)

[1] 16

> #We can have multiple arguments

> Fun3 = function(x, y) {

+ return (x*y)

+ }

> Fun3(3, 4)

[1] 12

38 dr lee fawcett miss amy chadwick

4.1.2 A more useful function

Here the function below takes in a vector, plots a histogram and returns

a vector containing the mean and standard deviation:

> Investigate = function(values) {

+ hist(values)

+ m_std = c(mean(values), sd(values))

+ return(m_std)

+ }

Once we have created our function, we can put it to good use: Obviously, a histogram would also be

created – it’s just not shown here.

See Section 3.2.2 for examples of his-
tograms.> #Call the function (plot not shown)

> Investigate(movies$Rating)

[1] 5.522715 1.451864

4.1.3 Variable scope

When we call a function, R first looks for local variables (inside function),

then global variables (outside funtion). For example, Fun4 uses a global R scoping rules are actually a bit more
complicated than described below. R
uses something called lexical scope, but

this doesn’t affect us.

variable:

> blob = 5

> Fun4 = function() {

+ return(blob)

+ }

> #Function uses the global blob

> Fun4()

[1] 5

However, in Fun5, we use a local variable:

> #Here we use a local variable

> Fun5 = function() {

+ blob = 6

+ return(blob)

+ }

> Fun5()

[1] 6

> #Local doesn't affect global!

> blob

[1] 5

As a general rule, functions should only use local variables. This makes

your code more portable and less likely to have bugs.

how to use r within your degree 39

4.2 Conditionals

Conditional statements are features of a programming language which

perform different computations or actions depending on whether a

condition evaluates to TRUE or FALSE. They are used in almost all

computer programs.

4.2.1 If statements

The basic structure of an if statement is:

> if(expr) {

+ #do something

+ }

where expr is evaluated to be either TRUE or FALSE. The following

example illustrates if statements in R:

> x = 5; y = 5

> if(x<5) {

+ y = 0

+ }

> y

[1] 5

In this code chunk, x < 5 evaluates to be FALSE so the following

brackets are not evaluated. We test for greater than in a similar

manner:

> x = 5; y = 5

> if(x > 0) {

+ y = 0

+ }

> y

[1] 0

Here x > 0 evaluates to be TRUE so, y is set equal to 0. If we wanted

to test for equality with zero, then we would use ==.

We can also use if statements in functions, for example to check that

our data is negative we can construct the following function:

> IsNegative = function(value) {

+ I = FALSE

+ if(value < 0) {

+ I = TRUE

+ }

+ return(I)

+ }

> IsNegative(1)

[1] FALSE

40 dr lee fawcett miss amy chadwick

> IsNegative(-5.6)

[1] TRUE

A more sophisticated function could be:

> IsGreaterThan = function(value1, value2) {

+ is_greater_than = FALSE

+ if(value1 > value2) {

+ is_greater_than = TRUE

+ }

+ return(is_greater_than)

+ }

Which we can then call:

> IsGreaterThan(-5, -6)

[1] TRUE

> IsGreaterThan(10, 10)

[1] FALSE

4.3 Control statements

At times we would like to perform some operation on a vector or a

data frame. Often R has built-in functions that will do this for you,

e.g. mean, sd,... Other times we have to write our own functions. For

example, suppose we want to calculate ∑10
i=1 i2 .

In R we can use a for loop:

> x = 0

> for(i in 1:10) {

+ x = x + i^2

+ }

> x

[1] 385

So in the above code R is ‘looping’ from i = 1 to i = 10, and after

each loop you get a value of x that is then added onto the next,

consequentially summing all the values of i.

Another example is ∑−1
j=−5 ej/j2 . This can be done in R in the following

way:

> total = 0

> for(j in -5:-1) {

+ total = total + exp(j)/j^2

+ }

> total

[1] 0.4086594

how to use r within your degree 41

A more tricky example: Calculate ∑ ek/k2, for k = 3, 6, 9, . . . , 21:

> total = 0

> for(i in 1:7) {

+ k = i*3

+ total = total + exp(k)/k^2

+ }

> total

[1] 3208939

Exercise: Using the inbuilt R function sum, calculate the above sum-

mations without using for loops.

4.4 Putting it all together

Rather than have to constantly write R code to solve the summations

in §4.3 we can create a function to solve the general form:

ie

∑
i=is

ei

i2
for i = is, is + j, is + 2j, . . . , ie .

So in R we have:

> Summation1 = function(i_s, i_e, j) {

+ total = 0

+ for(i in 1:(i_e/j)) {

+ k = i*j

+ total = total + exp(k)/k^2

+ }

+ return(total)

+ }

> #Summation1(8, 14, 2)

> Summation1(3, 21, 3)

[1] 3208939

4.5 The apply family

R has been designed with manipulating data in mind. Due to this,

there are two important functions that are unique to R. Probably not unique, but not common
in other programming languages.

4.5.1 The apply function

We use the apply function when we want to apply the same function

to every row or column of a data frame. For example, suppose we have

a data frame with three columns:

> (df4 = data.frame(c1 = 1:4, c2 = 4:7, c3 = 2:5))

c1 c2 c3

1 1 4 2

2 2 5 3

3 3 6 4

4 4 7 5

42 dr lee fawcett miss amy chadwick

The apply function takes (at least) three arguments. The first argument

is the data frame, the second the number 1 or 2 indicating row or column

and the third a function to apply to each row or column. So:

> apply(df4, 1, mean)

[1] 2.333333 3.333333 4.333333 5.333333

calculates the mean value of every row, while:

> apply(df4, 2, sd) #sd of the columns

c1 c2 c3

1.290994 1.290994 1.290994

calculates the standard deviation of every column.

Suppose one of the columns was non-numeric:

> (df5 = data.frame(c1 = 1:3, c2 = 4:6,

+ c3 = LETTERS[1:3]))

c1 c2 c3

1 1 4 A

2 2 5 B

3 3 6 C

then taking the mean doesn’t really make sense:

> apply(df5, 1, mean)

[1] NA NA NA

Instead, we remove the column, then calculate the mean:

> apply(df5[,1:2], 1, mean)

[1] 2.5 3.5 4.5

4.5.2 The tapply function

The function tapply is very useful, but at first glance can be tricky to

understand. It’s best described using an example:

> #The first two arguments are vectors

> tapply(movies$Length, movies$mpaa, mean)

NC-17 PG PG-13 R

110.18750 97.23384 104.97877 100.18818

In the above code, we have calculated the average movie length condi-

tional on its MPAA rating. So the average length of a PG movie is 97

minutes and the average NC-17 movie length is 110mins.

how to use r within your degree 43

With tapply we can do we very interesting things. For example, in the

next piece of code, we plot the average movie length conditional on it’s

rating:

> tapply(movies$Length, movies$Rating, mean)[1:6]

1 1.2 1.3 1.4 1.5 1.6

85.5 93.0 87.5 85.0 67.0 86.0

> rating_by_len = tapply(movies$Length, movies$Rating,

+ mean)

> plot(names(rating_by_len), rating_by_len)

Imagine trying to produce Figure 4.1 in Excel!

Figure 4.1: Plot of mean movie length
conditional on its rating.

4.6 Help

R has a very good help system. If you need information about a

particular function – say plot – then typing ?plot in a R terminal will

bring up the associated help page.

The internet is another very good source of R help. Unfortunately,

using Google isn’t particularly useful since the letter “R” appears on

most web pages! However, you can use

http://www.rseek.org/

Using this search engine limits searches to R web-pages.

Practicals

You should now complete Practical 3 which involves questions on Functions and Loops.

http://www.rseek.org/

44 dr lee fawcett miss amy chadwick

Conclusion: Summary of R commands

You should now know the meaning of, and be able to use, all the

functions in Table 5.1.

Command Comment

for A for loop. See §4.3

if or else A conditional statement. See §4.2.

function An R function constructor. See §4.1

apply or tapply See §4.5 Table 4.1: Summary of R commands

in this chapter.

how to use r within your degree 45

amy

5

Random Number Generation

Objectives

This chapter will focus on random number generation in R.

5.1 Randomness: quantifying uncertainty

The concepts of uncertainty and randomness have intrigued humanity

for a long time. The world around us is not deterministic and we are

faced continually with chance occurrences. Uncertainty is inherent in

nature: for example, the behaviour of fundamental physical particles,

genes and chromosomes in biology, and individuals in society under

stress or strain. The methodology for exploring uncertainty involves

the use of random numbers.

5.2 Pseudo–random numbers

Suppose we need to obtain a list of random digits 0, 1, 2, . . . , 9. we

use Pseudo-random numbers generators (RNG), that is, algorithms for

generating sequences of numbers that approximate the properties of

true random numbers.

5.3 Random numbers in R

5.3.1 The runif function

R has a number of commands that generate and manipulate random

numbers. One function that we will make use of here is: The default random number generator

used by R is the Mersenne-Twister.

> runif(n, min=0, max=1)

The function is a blend with ‘r’ for random and ‘unif’ for uniform. This essentially generates random num-
bers from a continuous Uniform distri-
bution - something you will see in your

Stage 2 probability/statistics modules.

This is what most calculators do when
we press the random number button!

This function will generate n random numbers between the values of

min and max. If the arguments min or max are omitted, then the default

values are 0 and 1 respectively. For example:

> runif(1)

[1] 0.1309786

how to use r within your degree 47

> runif(1)

[1] 0.862699

> runif(5)

[1] 0.3791398 0.2896961 0.8604805 0.5334447 0.3611861

> runif(1, 6, 7)

[1] 6.021599

Notice that calling runif returns different values. If we wish to rerun

a computer experiment, we may need repeatability . . .

In this case we use the command set.seed, e.g. The function set.seed sets the seeds of
all possible underlying random number
generators. This function is actually

an interface to .Random.seed. Don’t
worry about this.

> set.seed(12345)

> runif(1)

[1] 0.7209039

> runif(1)

[1] 0.8757732

> set.seed(12345)

> runif(1)

[1] 0.7209039

You can see that the set.seed function above allows R to remember

the experiment so that it can be rerun.

If we want to generate integers, say 0, 1, . . ., 9, then we could simply

take the first value after the decimal place.

5.3.2 The sample function

Another important R function that we will use is the sample function:

> sample(x, size, replace = FALSE, prob = NULL)

This takes the following arguments:

• x: a list of values, usually a vector.

• size: non-negative integer giving the number of items to choose.

• replace: Should sampling be with replacement? Default: FALSE.

• prob: A vector of probability weights. Default: All values equally

likely.

See ?sample for help.

48 dr lee fawcett miss amy chadwick

Example usage of sample

Suppose we wish to sample five numbers from {1, 2, 3, 4, 5, 6}, then:

> set.seed(1)

> x = c(1, 2, 3, 4, 5, 6)

> sample(x, 5)

[1] 2 6 3 4 1

We can also sample with replacement:

> sample(x, 5, replace=TRUE)

[1] 6 6 4 4 1

This means that values may appear more than once.

5.3.3 Simulating the Capital One Cup draw

We are in the semi-finals of the Capital One cup, and need to organise

the draw for the final stage. The remaining teams are:

Manchester Utd, Manchester City, Sunderland, West Ham.

Here’s how we do this in R.

> set.seed(3)

> teams = c("Man Utd", "Man City", "Sunderland", "West Ham")

> sample(teams, 4)

[1] "Man Utd" "Sunderland" "West Ham" "Man City"

So, we have ‘Man Utd vs Sunderland’ and ‘Man City vs West Ham’ 1. 1 As actually happened in 2014.

However, if we think Sunderland are likely to get beaten by Manchester

United, we can rig the sampling mechanism:

> prob_weights = c(0.4, 0.4, 0.05, 0.2)

> sample(teams, 4, prob=prob_weights)

[1] "Man Utd" "Man City" "West Ham" "Sunderland"

That’s better! The two Manchester teams had higher probability

weights therefore they were more likely to get chosen first and be

against each other.

how to use r within your degree 49

Conclusion: Summary of R commands

You should be able to understand and use all the commands in Table

5.1.

Command Comment Example

sample Sample discrete numbers sample(c(1,2,3))

runif Generate a random number runif(1)

between 0 & 1

set.seed Set the seed of the random set.seed(10)

number generator

Table 5.1: Summary of R commands
in this chapter.

You should now feel prepared for most of the R you will

see in your Stage 2 statistics courses. How confident you are depends

on how well you have worked through this booklet and the tasks on

the webpage. Remember the more you practice the better you will be

and there is plenty of material you can attempt! If you do have any

problems then do not hesitate to email any of the following lecturers:

• Lee Fawcett at lee.fawcett@newcastle.ac.uk ;

• Christian Lawson-Perfect at christian.perfect@newcastle.ac.uk ;

• Christopher Graham at Christopher.Graham@newcastle.ac.uk.

Computer Based Assessments

You should now take the opportunity to complete the Computer Based Assessment (CBA 4)

which will cover the material you have read so far. We would advise not continuing with the

material until you are confident with all the questions covered.

50 dr lee fawcett miss amy chadwick

amy

	Background
	History
	What is R?
	Installing R
	Previous computing knowledge
	Movie data set

	Introduction to R
	Accessing R
	A simple R session
	Movie data set
	Assignment operations
	Data types
	Vectors
	Logical vectors
	Data frames

	Data summaries
	Numerical Summaries
	Graphical summaries

	Control Statements and Functions
	Functions
	Conditionals
	Control statements
	Putting it all together
	The apply family
	Help

	Random Number Generation
	Randomness: quantifying uncertainty
	Pseudo–random numbers
	Random numbers in R

