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Abstract

We provide a complete description of the presentations of the interval groups
related to quasi-Coxeter elements in finite Coxeter groups. In the simply laced
cases, we show that each interval group is the quotient of the Artin group asso-
ciated with the corresponding Carter diagram by the normal closure of a set of
twisted cycle commutators, one for each 4-cycle of the diagram. Our techniques
also reprove an analogous result for the Artin groups of finite Coxeter groups,
which are interval groups corresponding to Coxeter elements. We also analyse
the situation in the non-simply laced cases, where a new Garside structure is
discovered.

Furthermore, we obtain a complete classification of whether the interval
group we consider is isomorphic or not to the related Artin group. Indeed, us-
ing methods of Tits, we prove that the interval groups of proper quasi-Coxeter
elements are not isomorphic to the Artin groups of the same type, in the case
of Dn when n is even or in any of the exceptional cases. In [BHNR23], we show
using different methods that this result holds for type Dn for all n ≥ 4.
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1 Introduction
This article is a follow-up to the paper [BNR23] entitled “Interval groups related to
finite Coxeter groups I” by the first, third and fourth authors. We considered in Part
I [BNR23] the unique infinite family of finite Coxeter groups where proper quasi-
Coxeter elements exist (it is the family of type Dn). In this paper, we provide a
complete description of the interval groups for all the quasi-Coxeter elements for all
the types of finite Coxeter groups.

This work was motivated by the works of Birman–Ko–Lee [BKL01], Bessis [Bes03],
Bessis–Digne–Michel [BDM02], and McCammond–Sulway [MS17] within the dual ap-
proach to Coxeter and Artin groups. This latter approach consists of replacing the
standard generating set of a Coxeter group by the set of all its reflections. Using
this new generating set, one can describe intervals in the associated Coxeter group
and define an order relation on them. In our study, we are considering intervals as-
sociated with quasi-Coxeter elements rather than the Coxeter elements of the dual
approach. Recall that in the case of Coxeter elements, these intervals are precisely the
non-crossing partition posets that are of general interest in Mathematics. To learn
more about non-crossing partition posets, see [BBG+19]. To each of these intervals,
one can naturally associate an interval group defined by an abstract group presenta-
tion. Moreover, if the corresponding poset is a lattice, then one immediately gets a
Garside structure. These structures are very rich, since the related groups have many
important homological, homotopical, and group theoretical properties. Although the
lattice property is important, the study of McCammond–Sulway [MS17] in the affine
type also motivates the cases where the lattice condition fails. Indeed, they were
able to embed the interval group into a Garside group and therefore obtain all the
nice properties coming from Garside theory. The intervals are constructed in a finite
Coxeter group, while the interval groups we obtain are infinite.

We denote by (W,R) the finite Coxeter system, and w a quasi-Coxeter element
(defined in Definition 2.1). Quasi-Coxeter elements that are not Coxeter elements
are called proper quasi-Coxeter elements. Moreover, a proper quasi-Coxeter element
exists precisely in types Dn for n ≥ 4, E6, E7, E8, F4, H3, and H4 (see [BGRW17]).

In [Car72], Carter defines a diagram ∆ associated with each conjugacy class of ele-
ments of the simply laced Coxeter groups. For quasi-Coxeter elements, these diagrams
are the Coxeter diagrams and the diagrams shown in Figures 1 to 5. We determine the
quasi-Coxeter elements for the non-simply laced types H3 and H4 using the computer
algebra system GAP [GAP21].

We denote by G([1, w]) the interval group related to w (defined in Definition 2.14).
We describe presentations of the interval groups for the simply laced types by gen-
erators and relations all in accordance with the corresponding Carter diagram along
with what we call twisted cycle commutator relators, which are defined again from
the Carter diagram. We formulate these presentations in the next theorem.

Theorem A. Let W be a simply laced Coxeter group, w a proper quasi-Coxeter
element of W , and ∆ the Carter diagram associated with w. Then the interval group
G([1, w]) is the quotient of the Artin group A(∆) of the Carter diagram ∆ associated
with w by the normal closure of a set of twisted cycle commutators tc(s1, s2, s3, s4),
one for each 4-cycle (s1, s2, s3, s4) within ∆, where tc(s1, s2, s3, s4) is defined to be
[s1, s

−1
2 s3s4s

−1
3 s2].

For typeDn, Theorem A is proven in [BNR23]. We restate that result in this paper
as Theorem 2.18. For the exceptional cases E6, E7, and E8, we explain in Section 2
how we prove this result computationally; that result is stated as Theorem 2.20.

This calculation was challenging, especially for the case E8. Actually, we found a
clever way to construct the dual presentations of the interval groups from the posets
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of quasi-Coxeter elements without having to determine the length over the reflections
of all the elements in the related Coxeter group. This is because the relations of the
presentation can be defined from elements that are only of length 2 below a quasi-
Coxeter element. Another challenging thing was to simplify the dual presentations
in order to obtain the presentations in Theorem A. All this was done using GAP
[GAP21]. Notice also that the intervals are constructed in a finite Coxeter group,
while the interval groups we obtain are infinite.

Theorem A evokes a similar result for Artin groups of the same types, proved in
[GM17, HHLP17], relating to most (but not all) of the Carter diagrams referred to in
Theorem A. It is proven in this article as Theorem 2.19.

Nice presentations for the non-simply laced finite Coxeter groups of types F4 and
H3, are described in Theorems 2.22 to 2.25.

Other important results in Section 2 concern the poset related to the interval
[1, w]. We embed this poset into the poset of subspaces of the ambient vector space
of the Tits’ representation of (W,R) as well as in the poset of parabolic subgroups
of W . Further, we classify in Theorem 2.12 the cases where [1, w] is a lattice. In
particular, the interval group related to the quasi-Coxeter element H3(a2) considered
in Theorem 2.23 is a Garside group, and by Theorem B below, that Garside group is
not isomorphic to the Artin group of type H3.

The main result of Section 3 is the following.

Theorem B. For W of type Dn with n even and for all the exceptional types, the
interval group G([1, w]) of a proper quasi-Coxeter element w is not isomorphic to the
Artin group of the same type as W .

Its proof employs an adaptation of Tits’ methods, which were originally introduced
by Tits in [Tit66], where the study of Artin groups of finite Coxeter groups was
initiated. Theorem B will be a consequence of Theorems 3.10 and 3.12. A complete
proof for type Dn for any n based on different methods is provided by the authors
in [BHNR23].

We believe that the interval groups deserve further study. One of the desirable
properties is the existence of a finite dimensional classifying space of the interval
groups. More properties are presented in open questions in Section 4. These proper-
ties are mainly inspired by the consequences of having a Garside group. In particular,
a Garside group has normal forms that enable one to solve the word and conju-
gacy problems, and has a natural finite-dimensional classifying space (which implies
torsion-freeness). Moreover, the theory of quasi-Coxeter elements can also be ex-
tended to the context of complex reflection groups and complex braid groups, which
yields to many open questions; see [DLM22].

Acknowledgements. The third author would like to thank the DFG as he is funded
through the DFG grants BA2200/5-1 and RO1072/19-1. The first and third authors
would like to thank Theo Douvropoulos and Thomas Gobet for the fruitful discussions
during their visits to Bielefeld University, as well as Joel B. Lewis for a comment on
a previous draft.

2 Presentations of interval groups for quasi-Coxeter
elements

2.1 Dual approach to Coxeter groups

Let (W,R) be a Coxeter system, and let T =
⋃

w∈W
w−1Rw be the set of reflections

of W . The dual approach to the Coxeter group W is the study of W as a group
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generated by T . Note that the classical approach uses the Coxeter system (W,R)
with generating set R.

Each w ∈W is a product of reflections in T . We define

`T (w) := min{k ∈ Z≥0 | w = t1t2 · · · tk; ti ∈ T}

called the reflection length of w. Let w = t1t2 · · · tk with ti ∈ T and k = `T (w). We
call (t1, t2, . . . , tk) (or t1t2 · · · tk by abuse of notation) a reduced decomposition of w.

Since the set T of reflections is closed under conjugation, there is a natural way
to obtain new reflection decompositions from a given one. The braid group Bn acts
on the set Tn of n-tuples of reflections via

ri(t1, . . . , tn) := (t1, . . . , ti−1, titi+1ti, ti , ti+2, . . . , tn),

r−1i (t1, . . . , tn) := (t1, . . . , ti−1, ti+1 , ti+1titi+1, ti+2, . . . , tn).

We call this action of Bn on Tn the Hurwitz action. It is readily observed that this
action restricts to the set of all reduced reflection decompositions of a given element
w ∈W . If the latter action is transitive, then we say that the dual Matsumoto prop-
erty holds for w.

2.2 Quasi-Coxeter elements
Recall that a Coxeter element c ∈ (W,R) is defined to be any conjugate of the product
of all elements of R in some order. A more general notion of (parabolic) quasi-Coxeter
elements is described in the next definition. It is borrowed from [BGRW17]. Recall
that a simple system of a Coxeter group is a minimal subset of the positive roots Φ+

which generates the same positive cone as Φ+, where the positive cone is defined as
the set of non-negative linear combinations of the vectors in Φ+.

Definition 2.1. (a) A subgroup P of W is called a parabolic subgroup if there is
a simple system R′ = {r′1, . . . , r′n} of W such that P = 〈r′1, . . . , r′m〉 for some
m ≤ n.

(b) An element w ∈W is called a parabolic quasi-Coxeter element for (W,T ) if there
is a reduced decomposition w = t1 · · · tm such that 〈t1, . . . , tm〉 is a parabolic
subgroup of W . If this parabolic subgroup is W , then we simply call w quasi-
Coxeter element.

Remark 2.2. Usually, a parabolic subgroup of the Coxeter system (W,R) is defined to
be the conjugate of a subgroup generated by a subset of R. If W is finite, then Defini-
tion 2.1(a) coincides with the usual definition of a parabolic subgroup (see [BGRW17,
Section 4]).

Every Coxeter element is a quasi-Coxeter element, and a quasi-Coxeter element is
called proper if it is not a Coxeter element.

The dual Matsumoto property characterises the parabolic quasi-Coxeter elements
(see Theorem 1.1 in [BGRW17]).

Theorem 2.3. An element w ∈ W is a parabolic quasi-Coxeter element if and only
if the dual Matsumoto property holds for w.

2.3 Carter diagrams
Let W be a crystallographic Coxeter group (Weyl group), that is of type An, Bn, Dn,
E6, E7, or E8 or of type F4. Let w be an element of a Coxeter group W . By Carter
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[Car72], there exists a bipartite decomposition of w over the set T of reflections of
the form

w = w1w2 = t1t2 · · · tk︸ ︷︷ ︸
w1

tk+1 · · · tk+h︸ ︷︷ ︸
w2

,

where `T (w) = k + h and bipartite means that any ti and tj (i 6= j) in the decompo-
sition of w1 and in the decomposition of w2 commute.

A Carter diagram ∆ related to this bipartite decomposition of w has vertices
that correspond to the reflections ti that appear in the decomposition of w, and two
vertices corresponding to the reflections ti and tj (i 6= j) are connected by o(titj)− 2
edges, where o(titj) is the order in the Coxeter group of the product titj . The Carter
diagram is called admissible if each of its cycles contains an even number of vertices.
Carter introduced these diagrams in order to classify the conjugacy classes in Weyl
groups.

Carter diagrams on n vertices, where n is the cardinality of R, describe the conju-
gacy classes of quasi-Coxeter elements in W . Now we will describe a Carter diagram
related to each conjugacy class of proper quasi-Coxeter elements that contains a chord-
less cycle of four vertices. Note that for a Coxeter element, the corresponding Carter
diagram is the Coxeter diagram (which has no cycle).

Carter diagrams in type Dn

There are bn/2c conjugacy classes of quasi-Coxeter elements in typeDn for n ≥ 4. The
following Carter diagram describes these conjugacy classes, where 1 ≤ m ≤ bn/2c.

s2 s3 sm−1

sm

sm+1

s1

sm+2

sm+3 sn−1
sn

Figure 1: Carter diagram ∆m,n of type Dn.

Now we discuss the exceptional cases. For the related Carter diagrams, we will
use the notation of Carter (see [Car72]).

Carter diagrams in type E6

There are two conjugacy classes of proper quasi-Coxeter elements, whose Carter dia-
grams are illustrated in Figure 2.

a1: a2:

Figure 2: Carter diagrams E6(ai) for i = 1, 2.

Carter diagrams in type E7

There are four conjugacy classes of proper quasi-Coxeter elements, whose Carter
diagrams are illustrated in Figure 3.
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a1: a2:

a3: a4:

Figure 3: Carter diagrams E7(ai) for i = 1, . . . , 4

Carter diagrams in type E8

There are eight conjugacy classes of proper quasi-Coxeter elements, whose Carter
diagrams are illustrated in Figure 4.

a1: a2:

a3: a4:

a5: a6:

a7: a8:

Figure 4: Carter diagrams E8(ai) for i = 1, . . . , 8

Carter diagrams in type F4

There is one conjugacy class of proper quasi-Coxeter elements, whose Carter diagram
is illustrated in Figure 5.

Figure 5: Carter diagram F4(a1).
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2.4 Non-crossing partitions for quasi-Coxeter elements
Let V be the ambient space of the Tits representation W ≤ GL(V ) (see [Bou68,
Chapter V, 4.3]). Further, let w ∈ W be a quasi-Coxeter element in W . In this
section we define the set of non-crossing partitions [1, w], and embed it into the set
of parabolic subgroups of W as well as into the set of subspaces of V . The two sets
naturally both carry the structure of posets. We will see that each pair is either
isomorphic or anti-isomorphic.

We also analyse the lattice property for the poset of non-crossing partitions for w
for the finite Coxeter systems and all the quasi-Coxeter elements.

The poset ([1, w],�)

We start by defining left and right division in W .

Definition 2.4. We say that x ∈W is a left divisor of w, and write x � w, if w = xy
and `T (w) = `T (v) + `T (u) for some with y ∈W .

Notice that x � w holds if and only if `T (w) = `T (x) + `T (x−1w), which holds
if and only if every reduced T -decomposition of x can be extended to a reduced
T -decomposition of w.

Definition 2.5. The relation � is an order relation and is called the absolute order
on W . The interval [1, w] related to an element w ∈W is defined to be the set of left
divisors of w for �. We also call [1, w] the set of non-crossing partitions for w.

We define division from the right similarly. We say that y is a right divisor of w,
and write y �r w, if there is x in W such that w = xy and `T (w) = `T (v) + `T (u).
We also define the interval [1, w]r of right divisors of an element w ∈W .

It follows that the pair ([1, w],�) is a poset. In Theorem 2.12, we will show that,
apart from in type H3 and H4, it is a lattice if and only if the element w is a Coxeter
element. In typeH3, the poset [1, w] is a lattice for each quasi-Coxeter element w ∈W .

We recall Corollary 6.11 of [BGRW17], which we state here as a lemma.

Lemma 2.6. Let w ∈ W be a quasi-Coxeter element. Then every element in [1, w]
is a parabolic quasi-Coxeter element.

In the following, let w be always a quasi-Coxeter element.

The poset (P(w),≤)

Let x be an element in the interval [1, w]. According to Lemma 2.6, x is a parabolic
quasi-Coxeter element. Therefore, there exists a reduced T -decomposition x = t1 · · · tk
such that Px := 〈t1, . . . , tk〉 is a parabolic subgroup of W , where t1, · · · tk ∈ T . Re-
call that the parabolic closure of x is the intersection of all parabolic subgroups that
contain x. It is again a parabolic subgroup.

Lemma 2.7. Let x be a parabolic quasi-Coxeter element. Then the following proper-
ties hold.

(a) Px = 〈t1, . . . , tk〉 if x = t1 · · · tk is a reduced T -decomposition with t1, . . . , tk ∈ T .

(b) Px = 〈t ∈ T | t � x〉.

(c) Px = 〈y ∈W | y � x〉.

(d) Px is the parabolic closure of x.
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(e) Px = 〈y ∈W | y(v) = v for all v ∈ Fix(x)〉 where Fix(x) = {v ∈ V | x(v) = v}.

Proof. Statement (a) is a consequence of [BGRW17, Proposition 4.3] and Theo-
rem 2.3. By the definition, Px is a subgroup of P := 〈t ∈ T | t � x〉. If t � x
for some t ∈ T , then there is a reduced T -decomposition of x including t. Therefore,
t is in Px by (a), which shows P ⊆ Px, and Px = P . This shows (b). The proof of (c)
is done analogously. Assertions (d) and (e) follow from [BDSW14, Theorem 1.4] and
[BGRW17, Section 4], respectively (for (e) see also [Bou68, Chapter V, 1.6]).

Thus, the definition of Px is independent of the chosen reduced T -decomposition
of x. We set P(w) := {Px | x ∈ [1, w]}. Then the subgroup relation ≤ defines an
order relation on P(w), and (P(w),≤) is a poset.

The poset (F(w),⊆)

For each x ∈ [1, w], consider the subspace Fix(x) := ker(x− id) = {v ∈ V | x(v) = v}
of V (see Lemma 2.7(e)). Consider the commutator subgroup Mov(x) := [V, x] =
im(x − id) in the semi-direct product V o 〈x〉. Then, due to Maschke’s theorem
V = Fix(x) ⊕ Mov(x). It is an easy calculation to see that Fix(x) and Mov(x)
are perpendicular and therefore Fix(x) = Mov(x)⊥. More generally, we consider for
X ⊆W the subspace Fix(X) := {v ∈ V | x(v) = v for all x ∈ X} of V . Note that for
the parabolic subgroup Px, we have Fix(Px) = Fix(x) for every x ∈ [1, w].

Set F(w) := {Fix(x) | x ∈ [1, w]}. Then the inclusion ⊆ on sets defines an order
relation on F(w), and (F(w),⊆) is a poset. Further, notice that F(w) contains all
the reflection hyperplanes of W , as T is contained in [1, w] by [Bes03, Lemma 1.2.1
(i)]. By [Bou68, Chapter V, 1.6] every subspace F of F(w) is the intersection of some
of the reflection hyperplanes. Also note that F(w) does not necessarily contain the
intersection of any two of its elements; see Corollary 2.13.

Isomorphisms and anti-isomorphisms between these posets

Next, we show that the posets ([1, w],�) and (F(w),⊆) are anti-isomorphic. Brady
and Watt observed that if x � z for some x, z ∈W , then the action of x on V/Fix(x)
is determined by the action of z on Mov(z) and concluded from this that if a ∈ O(V )
and U a subspace of Mov(a), then there is a unique b ∈ O(V ) such that b � a
and Mov(b) = U (see [BW02, Theorem 1]). From this, we derive the following anti-
isomorphism.

Proposition 2.8. The map Fix : [1, w]→ F(w), x 7→ Fix(x) is an anti-isomorphism
between the posets ([1, w],�) and (F(w),⊆).

Proof. If Fix(x) = Fix(y) for two elements x, y in [1, w], then Mov(x) = Fix(x)⊥ =
Fix(y)⊥ = Mov(y). Therefore, we obtain with [BW02, Theorem 1] that Fix is injec-
tive. By the definition of F(w), it is surjective as well.

Next we show that Fix is an anti-isomorphism between the two posets. If x, y ∈
[1, w] such that x � y, then Fix(y) ⊆ Fix(x). So, assume that Fix(y) ⊆ Fix(x) for
some x, y ∈ [1, w]. Then Mov(x) ⊆ Mov(y). According to [BW02, Theorem 1], there
is a unique z ∈ O(V ) with z � y such that Mov(z) = Mov(x). We conclude from
the transitivity of the relation � that x, y are in [1, w]. Then it is a consequence of
[BW02, Theorem 1] that x = z, and x � y. Thus, Fix is an anti-isomorphism between
the two posets.

From Lemma 2.7(e), we immediately derive the following.

Lemma 2.9. We have Fix(Px) = Fix(x) for all x ∈ [1, w].

Next we consider the posets [1, w] and P(w).
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Proposition 2.10. The map p : [1, w] → P(w), x 7→ Px is an isomorphism between
the posets ([1, w],�) and (P(w),≤).

Proof. By Lemma 2.7, the map p is well-defined. We first show injectivity. Let
x, y ∈ [1, w] such that Px = Py. Then Fix(Px) = Fix(Py), and Lemma 2.9 and
Proposition 2.8 yield x = y. By definition of P(w), the map p is surjective as well.

It remains to show that p is an isomorphism of posets. Let x, y ∈ [1, w] such
that x � y. Then, by definition of p, we get Px ≤ Py. Let Px ≤ Py for some
x, y ∈ [x, y]. Then Fix(Py) ≤ Fix(Px). We conclude x � y by applying Lemma 2.9
and Proposition 2.8.

Combining Propositions 2.8 and 2.10, we immediately get the following.

Corollary 2.11. The posets (P(w),≤) and (F(w),⊆) are anti-isomorphic.

The lattice property

Theorem 2.12. Let w be a quasi-Coxeter element in a finite Coxeter group W .
In the simply laced types, the poset ([1, w],�) is a lattice if and only if w is a

Coxeter element.
In type H3, the poset ([1, w],�) is always a lattice.
In type H4, ([1, w],�) is a lattice if and only if w is a Coxeter element or a proper

quasi-Coxeter element of order 30, that is the Coxeter number in type H4.
In type F4, ([1, w],�) is a lattice if and only if w is a Coxeter element.

Proof. When w is a Coxeter element, the fact that ([1, w],�) is a lattice was shown
in [Bes03] and [BW08]. Then, consider w to be a proper quasi-Coxeter element.

For typeDn, we have shown in Proposition 6.6 in [BNR23] that the poset ([1, w],�)
is not a lattice, by showing the result in type D4 and then applying Theorem 2.1 of
Dyer [Dye01].

Consider types E6, E7, and E8. Since the Carter diagram related to each conjugacy
class of proper quasi-Coxeter elements contains a 4-cycle (that is, a type D4 cycle), as
illustrated in the figures of Section 2.3, the same Theorem 2.1 of Dyer applies. Hence
we also deduce that the posets are not lattices.

Using GAP [GAP21], we show the statement of the theorem for types H3, H4,
and F4.

Corollary 2.13. The posets (P(w),≤) and (F(w),⊆) are not lattices. In particular,
there are two subspaces F1, F2 in F(w), whose intersection is not in F(w).

Proof. The first assertions are consequences of the isomorphism and anti-isomorphism
results of the given posets. As F(w) is not a lattice, there is a bowtie in that poset
(see [BM10, Proposition 1.5]), which yields the second claim.

2.5 Interval groups for quasi-Coxeter elements
Let w be a quasi-Coxeter element of W . Consider the interval [1, w] = {v ∈W | v �
w}. The interval group related to the interval [1, w] is defined as follows.

Definition 2.14. We define the group G([1, w]) by a presentation with set of gen-
erators [1, w] in bijection with the interval [1, w], and relations corresponding to the
relations in [1, w], meaning that uv = r if u, v, r ∈ [1, w], uv = r, and u � r i.e.
`T (r) = `T (u) + `T (v).

By transitivity of the Hurwitz action on the set of reduced decompositions of w
(see Theorem 2.3), we have the following result.
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Proposition 2.15. Let w ∈ W be a quasi-Coxeter element, and let T ⊂ [1, w] be
the copy of the set of reflections T in W . Then

G([1, w]) = 〈T | tt′ = t′t′′ for t, t′, t′′ ∈ T if t 6= t′, t′′ ∈ T and tt′ = t′t′′ � w〉

is a presentation of the interval group with respect to w.

Notice that the relations presented in Proposition 2.15 are the relations that are
visible on the elements of length 2 in the poset ([1, w],�). Following Bessis [Bes03],
we call these relations the dual braid relations.

The following result is due to Michel as stated by Bessis in [Bes03] (Theorem 0.5.2)
and explained on page 318 of Chapter VI in [DDG+15] (see also [BDM02]). It is the
main theorem in interval Garside theory.

Theorem 2.16. If for v ∈W , the two intervals [1, v] and [1, v]r of the left and right
divisors of v are equal (we say that v is balanced) and if the posets ([1, v],�) and
([1, v]r,�r) are lattices, then the interval group G([1, v]) is an interval Garside group.

Since T is stable under conjugation, quasi-Coxeter elements are always balanced.
The only obstruction to obtain interval Garside groups is the lattice property. The
following is a consequence of Theorem 2.12.

Theorem 2.17. Let c be a Coxeter element. Then the posets ([1, c],�) and ([1, c],�r)
are lattices; hence the interval group G([1, c]) is a Garside group. The group G([1, c])
is isomorphic to the Artin group associated with W .

Note that Garside groups are desirable since they enjoy important group-theoretical,
homological, and homotopical properties. See [DDG+15] for a treatment on the foun-
dations of Garside theory.

2.6 Presentations for the interval groups for the quasi-Coxeter
elements

Let G be a group containing elements s1, s2, s3, and s4 that satisfy the relations of
the Artin group corresponding to the 4-cycle that is illustrated in the figure below.

s1

s4s2

s3

We associate two words with this 4-cycle, which we call the cycle commutator and
the twisted cycle commutator, and which we define by

cc(s1, s2, s3, s4) := [s1, s2s3s4s
−1
3 s−12 ], and tc(s1, s2, s3, s4) := [s1, s

−1
2 s3s4s

−1
3 s2].

It is straightforward to check that the four cycle commutators

cc(s1, s2, s3, s4), cc(s2, s3, s4, s1), cc(s3, s4, s1, s2), cc(s4, s1, s2, s3)

are equivalent, in the sense that if one of them is a relator of G (i.e. it evaluates to the
identity in G), then so do the other three, and the same is true of the corresponding
twisted cycle commutators. It follows from the braid relations between s2, s3, s4 that
s−12 s3s4s

−1
3 s2 =G s−14 s3s2s

−1
3 s4. Hence tc(s1, s2, s3, s4) and tc(s1, s4, s3, s2) are

equivalent. But we cannot deduce the same relationship between cc(s1, s2, s3, s4)

10



and cc(s1, s4, s3, s2), and so the word cc(s1, s2, s3, s4) must be associated with an
oriented 4-cycle of the form s1 → s2 → s3 → s4 → s1.

Notice also that both the cycle and twisted cycle commutator relators can be
written as relations between positive words (see for instance Lemma 5.3 in [BNR23]).

In the remainder of the paper, we will use the following abbreviation. Given a
Carter diagram ∆ and S a set of generators related to the vertices of ∆ we denote
by R(∆) the set of braid relations defined by ∆; that is, for each pair of generators
s, t, we have the relation sts = tst if the vertices representing s and t are joined by
an edge and st = ts if they are not.

Type Dn

The presentations in typeDn were the main object of study in our first paper [BNR23,
Theorem A].

Theorem 2.18. Let w be a quasi-Coxeter element of the Coxeter group W of type
Dn and ∆m,n its associated Carter diagram, as shown in Figure 1. Then the interval
group Gm,n := G([1, w]) admits a presentation over the generators s1, . . . , sn corre-
sponding to the vertices of ∆m,n together with the relations Rm,n := R(∆m,n) and the
twisted cycle commutator relator tc(s1, sm, sm+1, sm+2), associated with the 4-cycle
(s1, sm, sm+1, sm+2) within ∆m,n.

We would also like to draw attention to the alternative presentations for Gm,n

that are described in [BHNR23].

Types E6, E7 and E8

We prove the following results computationally. We will explain later the computa-
tional steps used in the proofs. Note that the presentations we obtain in Theorem 2.19
were already described in [GM17] and [HHLP17]. The main result of this section is
Theorem 2.20.

We consider a Carter diagram to be orientable if its edges can be oriented in such
a way that each 4-cycle is oriented. All Carter diagrams of types En(ai) that appear
in Figures 2 to 4 are orientable except for E7(a4), E8(a7), and E8(a8).

Theorem 2.19. LetW be a Coxeter group of types En for n = 6, 7 or 8. Let En(ai) be
an oriented Carter diagram. Then the Artin group A(En) associated with W admits
a presentation over the generators corresponding to the vertices of En(ai) with the
relations R(En(ai)) and a set of cycle commutator relators, one corresponding to
each oriented 4-cycle in the diagram.

Note that given any orientation of the Carter diagram considered in Theorem 2.19
provides the result of the theorem. Exactly the same diagrams are covered by
[HHLP17, Theorem 1.1], which derives a presentation relative to a diagram Γ′, of
an Artin group of type Γ, whenever Γ′ can be derived from Γ by a sequence of muta-
tions (see also [GM17]). Note that in Theorem A, Theorem 2.20, and Theorem 2.21,
we consider all Carter diagrams of types En(ai) and not only the orientable ones.

Theorem 2.20. Let W be a Coxeter group of types En for n = 6, 7 or 8. Let w be a
quasi-Coxeter element, and let ∆ be the Carter diagram associated with w.

Then the interval group G([1, w]) admits a presentation over the generators cor-
responding to the vertices of ∆ with the relations R(∆) and a set of twisted cycle
commutator relators, one corresponding to each 4-cycle in the diagram.
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An analogous result for Coxeter groups arises as a consequence of [CST94, The-
orem 6.10], which uses a process called switching, similar to the process of mutation
described in [GM17, HHLP17].

Theorem 2.21. Let W be a simply laced Coxeter group, and ∆ be a Carter diagram
associated with W . Then the Coxeter group W admits a presentation over the genera-
tors corresponding to the vertices of ∆ with the quadratic relations on the generators,
the relations R(∆) and a set of cycle commutator relators, one corresponding to each
4-cycle in ∆.

Our proofs of Theorems 2.19 and 2.20 are large computations, some of them re-
quiring significant computing power over a long period of time. The presentations
were established in sequences of steps, which we describe now. First, we describe the
steps that prove Theorem 2.20.

Step 1. We choose a representative for each conjugacy class of quasi-Coxeter ele-
ments. The computer programs that we used can be found at
https://www.math.uni-bielefeld.de/~baumeist/Dual-Coxeter/dual-Coxeter.html.
Associated to such representative is a Carter diagram (see Section 2.3). We distin-
guish between the conjugacy classes using the orders of the quasi-Coxeter elements.
Recall that the order of a Coxeter element is precisely the Coxeter number. For
types En (n = 6, 7, 8), we summarise the orders in the next tables. In each table,
the first column contains Carter diagrams and the second column the orders of the
corresponding quasi-Coxeter elements.

E6(a1) 9
E6(a2) 6
E6 12

E7(a1) 14
E7(a2) 12
E7(a3) 30
E7(a4) 6
E7 18

E8(a1) 24
E8(a2) 20
E8(a3) 12
E8(a4) 18
E8(a5) 15
E8(a6) 10
E8(a7) 12
E8(a8) 6
E8 30

Step 2. We determine a presentation of the interval group related to the chosen
quasi-Coxeter element as follows. First, we construct the elements of length 2 that
divide w. From these elements, we can define the dual braid relations that describe
our presentation of the interval group.

Step 3. We choose a set of reflections S of cardinality the rank of the Coxeter group
such that the relations between the corresponding elements in the interval group are
those that describe the relations of the Carter diagram related to the conjugacy class
of the quasi-Coxeter element. We denote by S the copy of S in the interval group.

Using the dual braid relations, we determine an expression over S ∪S−1 of all the
generators in T \S of the interval group. Finally, we replace the elements that belong
to T \S in the dual braid relations by their expressions over S ∪ S−1.

Step 4. Using the package kbmag [Hol95] of GAP [GAP21] and a computation
by hand, we show that all the relations other than the one described by the Carter
diagram and the corresponding commutator relators simplify in the interval group
(see Theorems 2.19, 2.20 for the type of the commutator relators).

Now Theorem 2.19 is obtained by considering the conjugacy class of the Coxeter
element in Step 1, and then applying Step 2 to Step 4 for all the related Carter
diagrams that appear in Theorem 2.19. Note that we attempted to construct the pre-
sentations for the non-orientable Carter diagrams that are excluded in Theorem 2.19.
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But we were unable to complete the computations, hence it seems likely (although it
is not proved) that the En Artin groups do not have presentations corresponding to
those diagrams.

As an evidence on how difficult the computation is, consider the case E8(a6) of
Theorem 2.20 as an example. The related proper quasi-Coxeter element considered
in Step 1 is of order 10. The number of the dual braid relations we obtain in Step 2
is 3630. Theorem 2.20 describes a presentation of the related interval group over 8
generators and 31 relations (these are the relations of the Carter diagram E8(a6) along
with 3 twisted cycle commutators). The length of the longest relation we simplified
in Step 4 is 2000.

Types H3, H4 and F4

We start with type H4, where the interval groups of proper quasi-Coxeter elements
are sorted out quickly. Actually, there exist ten conjugacy classes of proper quasi-
Coxeter elements. Nine of the intervals are not lattices and one is a lattice, as we
already mentioned in Section 2.4. This is a consequence of the fact that there is
an outer automorphism of the Coxeter group that interchanges the conjugacy class
of Coxeter elements and the conjugacy class of proper quasi-Coxeter elements of or-
der 30. This then also yields that the interval group for a proper quasi-Coxeter
elements of order 30 is isomorphic to the Artin group of type H4. For the remain-
ing proper quasi-Coxeter elements we compare the results of applying the function
LowIndexSubgroupsFpGroup to the interval groups within GAP to show that these
interval groups are not isomorphic to the Artin group of type H4.

For type H3, we have two conjugacy classes of proper quasi-Coxeter elements that
we denote by H3(a1) and H3(a2). Using GAP, we obtain the following results.

Theorem 2.22. The interval group related to the proper quasi-Coxeter element H3(a1)
is isomorphic to the Artin group of type H3. Since the interval is a lattice, then this
interval group is also a Garside group.

Theorem 2.23. The interval group related to H3(a2) admits a presentation over
three generators s1, s2, s3 and the relations are described by the following diagram
presentation

s3 s2

s1

5

along with the two relations

s2s3s2s1s3s2 = s3s2s1s3s2s3, (s3s2s1)3 = (s1s3s2)3.

Since the interval is a lattice, this interval group is a Garside group.

We also show that the interval group of Theorem 2.23 is not isomorphic to the
Artin group of type H3 by using LowIndexSubgroupsFpGroup within GAP. Hence it
defines a new Garside group.

We conjecture that this group is the fundamental group of the complement in C3

of an algebraic hypersurface.

We mention that using the same computational approach that we described pre-
viously for the cases E6, E7, and E8, we are able to show the following two results in
the case F4.
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Theorem 2.24. Let W be a Coxeter group of type F4. Let F4(a1) be the Carter
diagram illustrated in Figure 5 with (s1, s4) and (s2, s3) the edges with double bonds.
Then the Artin group A(F4) admits a presentation over generators corresponding to
the vertices of F4(a1) with relations R(F4(a1)) and the commutator relator [s2, s3].

Theorem 2.25. Let W be a Coxeter group of type F4. Let F4(a1) be the Carter
diagram illustrated in Figure 5 with (s1, s4) and (s2, s3) the edges with double bonds.
Then the interval group in this case admits a presentation over generators correspond-
ing to the vertices of F4(a1) with relations R(F4(a1)) and the commutator relators
[s−12 s1s2, s

−1
3 s4s3] and [s2s1s

−1
2 , s3s4s

−1
3 ]. Furthermore, it is not isomorphic to the

Artin group A(F4).

3 Non-isomorphism results
In this section, we show that the interval groups G = G([1, w]) associated with a
proper quasi-Coxeter element w of a Coxeter group of type Dn with n even, or of
type En with n ∈ {6, 7, 8}, are not isomorphic to the respective Artin groups A. This
has been already proven for the remaining finite Coxeter groups (types H3, H4, F4) in
Section 2.6.

Our first approach was to compare the abelianisations G/[G,G] and A/[A,A] of
the respective groups. Let S be the set of generators of the presentations for the
interval groups of type Dn or E6, E7 or E8 given in Section 2.6. The related Carter
diagrams are connected, and if s, t ∈ S correspond to neighbours in that diagram,
then sts = tst and sts−1 = t−1st . Therefore, the commutator subgroup G′ of
G contains the elements sts−1t−1 = t−1stt−1 = t−1s. From this, it follows that
all the elements in S are equal in the abelianisation. Moreover, the twisted cycle
commutator relations still hold if we identify all the elements in S. This shows that
the abelianisations of the Artin groups as well as of the interval groups are isomorphic
to Z. This also shows that the interval groups are infinite groups.

Therefore, we choose the new approach to consider the abelianisations of the pure
Artin and the pure interval groups. Our strategy is as follows. Let Γ be the Coxeter
diagram of the Coxeter group W . Let ϕ : A(Γ) −→ W (Γ) be a homomorphism from
the Artin group A = A(Γ) to the Coxeter group W = W (Γ) such that the kernel
ker(ϕ) is the pure Artin group PA(Γ). We call this the canonical epimorphism from
A toW . Tits proved that the abelianisation of PA(Γ) is isomorphic to the free abelian
group of rank |T | (see [Tit66]).

Note that the epimorphism ϕ sends the element s ∈ S to the respective reflection
in W . By Theorem 2.21 there is also such an epimorphism from G to W , whose
kernel is denoted by K and we call it the pure interval group. We show that the
abelianisation of K is of rank at most |T | − 2. Thereby we obtain a contradiction for
the types Dn with n even, or E6, E7, E8 by applying the following result of Cohen
and Paris [CP03].

Theorem 3.1. Let A(Γ) be an Artin group of type Dn with n even, or En with
n ∈ {6, 7, 8}. Then the canonical epimorphism is the unique epimorphism from A(Γ)
to W (Γ) up to automorphisms of W (Γ).

In the case Dn with n odd, there are three epimorphisms from A(Γ) to W (Γ) up
to automorphisms of W (Γ).

We follow the proof of Tits [Tit66] in the calculation of the abelianisation of the
kernel K. We first sketch his approach, then we discuss the interval groups of type
Dn in detail, and in the last part the interval groups for E6, E7 and E8.
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3.1 The abelianisation of the pure Artin group
Tits used the following notation in [Tit66]. He took a Coxeter system (W,R) of type
Γ with simple system R = {ri | 1 ≤ i ≤ n} and set of reflections T (he named it S).
Let I = {1, . . . , n} and denote by I the free group on I. We denote by R(Γ) the braid
relations determined by the Coxeter graph Γ.

Define a homomorphism from the free group I into the Coxeter group W by

• r : I→W by r(i) := ri with kernel L := ker(r).

Then we have W = 〈r1, . . . , rn | r2i , i ∈ I,R(Γ)〉, and L =� i2, i ∈ I,R(Γ)� is the
normal subgroup of I which is generated by the elements i2 for all i ∈ I and R(Γ) of
I. Further, let

• N be the normal subgroup of I generated by [L,L] and R(Γ), and V := I/N .
We denote the canonical epimorphism from I to V by q and we set qi := iN .

• Let f be the epimorphism f : V →W defined by f(qi) := ri, and U := ker f .

The homomorphism f is well-defined since N ⊂ L, and we have f ◦q = r. This setting
implies the following.

Lemma 3.2. Let A = A(Γ) be the Artin group of spherical type Γ. It follows that

(a) V/U ∼= W , and U = L/N ;

(b) U is an abelian normal subgroup of V ;

(c) U is the normal closure in V of the words q2i for all i ∈ I;

(d) A = A(Γ) = I/B where B := 〈〈R(Γ)〉〉 ≤ N ≤ I, and PA := PA(Γ) = L/B;

(e) U is isomorphic to the abelianisation of the pure Artin group PA.

Proof. Assertions (a) and (b) follow from the definition of U , (c) is a consequence
of the definition of r, and (d) follows from the definitions of the Artin and the pure
Artin groups. From (d), we conclude that PA/[PA,PA] = (L/B)/(([L,L]B/B) ∼=
L/([L,L]B) = L/N = U , which shows that U is isomorphic to the abelianisation of
the pure Artin group PA, that is (e).

Tits determined the abelianisaton of the pure Artin group PA in [Tit66, Theo-
rem 2.5].

Theorem 3.3. ([Tit66, Theorem 2.5]) There is a map g : T → U of the set of
reflections of W into the kernel U of the map f : V →W such that for all i ∈ I, t ∈ T
and w ∈W

q2i = g(ri) and g(rwi ) = g(ri)
w.

These relations determine the map g. It is injective, and U is the free abelian group
generated by g(T ), and is of rank |T |.

3.2 The abelianisation of the pure interval group of type Dn

Now we consider the interval group G := Gm,n related to the Coxeter group of type
Dn, where m > 1. We adapt Tits notation, construction and arguments for Artin
groups of spherical type to the group G in order to prove an upper bound of the rank
of the abelianisation K/[K,K] of the “pure interval group” K of G (see the definition
below). We keep the definitions of I and I, and let S = {s1, . . . , sn} be the set of n
generators of W that correspond to the vertices of ∆m,n. Define a homomorphism
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• s : I→W by s(i) := si, and let L := ker(s).

Then we have

W = 〈s1, . . . sn | s2i , i ∈ I,Rm,n,tc(s1, sm, sm+1, sm+2)〉,

where (s1, sm, sm+1, sm+2) is the unique 4-cycle in ∆m,n. Let

• N =� [L,L], Rm,n,tc(1,m,m + 1,m + 2) � E I and V := Vm,n := I/N . We
denote again by q the homomorphisms q : I→ V and set qi := q(i).

• Let f be the epimorphism f : V →W defined by f(qi) = ri, and U := ker f .

We get properties analogous to those for the Artin groups in Lemma 3.2:

Lemma 3.4. Let G := Gm,n be the interval group of type ∆m,n. It follows that

(a) V/U ∼= W , and U = L/N ;

(b) U is an abelian normal subgroup of V ;

(c) U is the normal closure of the words q2i in V , where i ∈ I;

(d) G = I/B where B :=� Rm,n,tc(1,m,m+1,m+2)�≤ N ≤ I , and K := L/B
is the kernel of the map from G to W sending si onto si;

(e) U is isomorphic to the abelianisation of K.

Proof. The proofs of (a), (b) are identical to the proofs of Lemma 3.2(a), (b). The
first part of assertion (d) is a consequence of [BNR23, Theorem A] and the second
part of the facts that I/B ∼= G and I/L ∼= W by (1) and the first part of (d).

To prove (c), let X be the normal closure of q2i ∈ V for 1 ≤ i ≤ n. Clearly
X ⊆ L/N . Observe that qiX satisfies the relations of the presentation for W by
[CST94]. This shows L/N ⊆ X, and equality now follows. Statement (e) is immediate
from the definitions of L,N and B.

In the following, we assume that n > 4. This implies, as m ≤ n/2, that m+2 < n.
The next lemma is an important fact which holds in A(Dn) (see [Tit66]), but also in
Gm,n with m > 1. For Statement (b) in the next lemma, we give two different proofs.
One is based on direct calculations (as in Tits [Tit66]) and the other one does not
need these calculations. The same method of the second proof will actually be used
for the exceptional groups later.

Lemma 3.5. We have that

(a) There is an action of W on U given by w(u) = v(u) for u ∈ U and w ∈ W ,
where v ∈ V is any element such that f(v) = w.

(b) CW (q2n) ≥ CW (sn).

Proof. The action of W on U defined in (a) is well-defined as U = ker(f) and as U is
abelian. It remains to prove (b).

Proof by direct calculation. As n ≥ 5, the element qn commutes with qi for
1 ≤ i ≤ n− 2. In our notation, sn corresponds to the root en − en−1. Let

s := s
sm+2sm+3···snsm+1···sn−1

1 ∈W.

Then s corresponds to the root en + en−1 and CW (sn) = 〈s1, . . . , sn−2, sn, s〉.
We note the following two properties. The first is an elementary calculation, and

the second follows from Lemma 3.4 (c).

16



(i) The braid relation qjqkqj = qkqjqk implies q−1j q2kqj = qkq
2
j q
−1
k ;

(ii) q−2j q2kq
2
j = q2k.

We apply these to derive (q2n)s = q2n by a direct calculation. This then implies
CW (q2n) ≥ CW (sn).

Proof of (b) without any calculation, using parabolic subgroups. We consider the
two following parabolic subgroups of W , the subgroups

P := 〈si, sn | 1 ≤ i ≤ n− 2〉 ∼= W (Dn−2)× Z2 and

Pe := 〈s1, sm+1, . . . , sn〉 ∼= W (Dn−m), (see Figure 1).

Then {s1, sm+1, . . . , sn} is a simple system in Pe, and we := s1sm+1 · · · sn is a
parabolic Coxeter element in W , as well as a prefix of w. It follows from [Tit66,
Proposition 2.1(3)] that CPe(q2n) ≥ CPe(sn) ∼= W (Dn−m−2) × Z2

2. Moreover, as qi
and qn commute for 1 ≤ i ≤ n− 2, the parabolic subgroup P fixes q2n, from which we
derive that 〈CPe

(sn), P 〉 is a subgroup of CW (q2n). Now the claim follows from the
fact that 〈CPe

(sn), P 〉 = CW (sn) (which is isomorphic to W (Dn−2)× Z2
2).

Corollary 3.6. Let n ≥ 5. Then the following hold:

(a) q21 , . . . , q2n are conjugate in V ;

(b) T := (q2i )V = (q2k)V for all i, k ∈ I;

Proof. Assertion (a) is a consequence of the connectivity of the Carter diagram for
w. Assertion (b) follows from (a).

Next we show equality in Lemma 3.5(b), which implies that there is an injective
map g : T → U , which sends si to q2i .

Lemma 3.7. We have CW (q2n) = CW (sn) and |T | = |T |.

Proof. We have that CW (q2n) ≥ CW (sn) by Lemma 3.5, and therefore CW (q21) ≥
CW (s1) by Lemma 3.6(a). Recall that W = O2(W ) n Sym(n), where O2(W ) is the
even part of the permutation module for Sym(n), and that C := CW (s1) = O nH,
where O = CW (s1) ∩ O2(W ) is of order 2n−2 and H ≤ Sym(n) is isomorphic to
Sym(n− 2)× Z2. The group H is a maximal in Sym(n).

First we show, if M is a proper overgroup of C in W , then O2(W ) is a subgroup
of M . Notice that C is a subgroup of index 2 in O2(W )C. Assume O2(W ) 6≤ M .
Then, also as H is maximal in Sym(n), it follows, that MO2(W )/O2(W ) ∼= Sym(n).
As O2(W ) does not contain a Sym(n)-invariant subgroup of index 2, we conclude
M = W and O2(W ) ≤M in contradiction to our assumption. Thus, every overgroup
of C in W contains O2(W ).

Consider the subgroup W4 of W generated by s1, sm, sm+1 and sm+2. It is iso-
morphic to the Coxeter group of type D4. Let V4 be the subgroup of V that is
generated by q1, qm, qm+1 and qm+2. Further, let V2,4 be the group V in the case that
(m,n) = (2, 4). Then there is an epimorphism ϕ from V2,4 onto V4, which sends the
elements qi in V2,4, for 1 ≤ i ≤ 4, onto the elements q1, , qm, qm+1, qm+2 in V accord-
ing to the diagram. Denote the kernel of ϕ by F . We derive from f(V4) ∼= W (D4)
that F is a subgroup of the kernel of the map f2,4 : V2,4 → W (D4), which sends qi
onto si. As this kernel is abelian, the subgroup F commutes with q21 in V2,4. This
yields

CV4
(q21) ∼= CV2,4/F (q21) = CV2,4

(q21) = CW (D4)(q
2
1) = CW (D4)(s1).

We checked the last equality with GAP. We conclude CV4(q21) = CW4(s1).

17



Assume that CW (q21) > C = CW (s1). Then O2(W ) ≤ CW (q21) by the second
paragraph. Therefore, Z3

2
∼= O2(W ) ∩W4 ≤ CW (q21) ∩W4 = CW4

(q21) = CW4
(s1),

which yields the contradiction that CW4
(s1), which is elementary abelian of order 16,

is a semi-direct product of an elementary abelian group of order 8 with an elementary
abelian group of order 4. This proves CW (q2n) = CW (sn). The second assertion is a
consequence of the first.

As a consequence of Lemma 3.7, we obtain that there is a bijective map g from T
to T ⊂ U as in the case of a spherical Artin group; see Theorem 3.3.

Corollary 3.8. Let n ≥ 4. The abelian group U is generated by the set T of size |T |.

Proof. The assertion follows from Lemma 3.4 (c) and Lemma 3.7.

In fact, a proper subgroup of T already generates U .

Proposition 3.9. Let n ≥ 4. Then the abelianisation of the kernel of the map from
Gm,n to W that takes si to si has a generating set of size at most |T | − 2.

Proof. We prove the assertion by induction on n. We checked by hand and using GAP
that U is free abelian of rank 10 if n = 4. Now let n ≥ 5. Let P := 〈q1, . . . , qn−1〉 ≤ V .
Then P is a quotient of the respective group Vk,n−1 related to Gk,n−1, where k = m
if m < n/2 and k = m − 1 if m = n/2. Let Tn−1 be the set of reflections in
f(P ) ∼= W (Dn−1). Then |(q21)P | = |Tn−1| and by induction 〈(q21)P 〉 is abelian of rank
at most |Tn−1| − 2. This implies that

U = 〈T 〉 = 〈Tn−1〉〈T \ Tn−1〉

is abelian of rank at most |Tn−1| − 2 + (|T | − |Tn−1|) = |T | − 2, as claimed.

3.3 Non-isomorphism
Theorem 3.10. Let W be a Coxeter group of type Dn with n ≥ 4 even, and w a
proper quasi-Coxeter element in W . Then G([1, w]) is not isomorphic to the Artin
group of type Dn.

Proof. By Proposition 3.9, the abelianisation of L/B is of rank less than |T | in Gm,n.
According to Theorem 3.1, there is a unique epimorphism form A(Dn) to the Coxeter
group W (Dn) if n is even. As according to Tits’ Theorem 3.3 the abelianisation of
the pure Artin group PA(Dn) is of rank |T |, it follows that Gm,n and A(Dn) are not
isomorphic.

3.4 The cases E6, E7, E8

Now consider the exceptional cases. We use the same notation as before, and we just
assume that W is a Coxeter group of type En for some n ∈ {6, 7, 8}. Observe that
Lemmas 3.4 and 3.5(a) of the last section still hold. We need to show Lemma 3.5(b)
case-by-case, which we do next. Then analogous statements of the two Corollaries 3.6
and 3.8 hold as well.

Lemma 3.11. Let W be a Coxeter group of type En with n ∈ {6, 7, 8}, and let w be
a proper quasi-Coxeter element. Then there is s1 ∈ S such that CW (q21) ≥ CW (s1).

Proof. We follow the second proof of Lemma 3.5(b). Our strategy is as follows. We
have that

P := 〈si | [si, s1] = 1〉 as well as Pm := 〈si | 1 ≤ i ≤ n, i 6= m〉
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are parabolic subgroups of W for every m ∈ {1, . . . , n} and s1 ∈ S. Therefore, we
have P ∩ Pm = 〈si | [si, s1] = 1 and si ∈ Pm〉 by [Bou68, Chapter IV, Section 2],
which can be easily computed, as we will do in the following tables.

In the three tables, we always choose s1 to correspond to the vertex in the Carter
diagram which is in the upper right corner and sm to be in the bottom right corner,
except for Cases E7(a3) and E8(a8), where sm is in the bottom left corner, and we
present P , Pm, CPm

(s1), and P ∩ CPm
(s1) = P ∩ Pm. We describe a parabolic

subgroup by writing down the type of the related root system. Our choice of s1 is
always such that 〈P,CPm

(s1)〉 = CW (s1) for each n ∈ {6, 7, 8} and each En(ai). By
the definition of P , we have P ≤ CW (q21), and by Lemma 3.5(b) and by induction we
obtain CPm(q21) ≥ CPm(s1). This yields

CW (q21) ≥ 〈CP (q21), CPm(q21)〉 ≥ 〈P,CPm(s1)〉 = CW (s1),

as claimed.

Case n = 6:
Type of w P Pm CPm

(s1) P ∩ Pm

E6(a1) A1 ×A4 D5 A2
1 ×D3 A1 ×A3

E6(a2) A1 ×A3 D5 A2
1 ×D3 A1 ×A3

In the first case P (resp. CPm(s1) in the second case) is a maximal subgroup in
CW (s1) ∼= Z2 × Sym(6), which yields the assertion in both cases.

Case n = 7:
Type of w P Pm CPm(s1) P ∩ Pm

E7(a1) A1 ×D5 D6 A2
1 ×D4 A1 ×D4

E7(a2) A1 ×A5 E6 A1 ×A5 A1 ×A4

E7(a3) A1 ×D4 E6 A1 ×A5 A1 ×A4

E7(a4) A1 ×D4 E6 A1 ×A5 A1 ×A3

If W is of type E7, then CW (s1) is of type A1 ×D6, i.e. isomorphic to Z2 × Z5
2 o

Sym(6). The overgroups of CPm
(s1) ∼= Z2×Sym(6) in CW (s1) appearing in the table,

if ai = a2, a3 or a4, are

Z2 × Sym(6) < Z2
2 × Sym(6) < Z2 × Z5

2 o Sym(6) = CW (s1).

Thus, if ai = a2, a3 or a4, then P∩Pm is not of index 2 in P and we get 〈P,CPm
(s1)〉 =

CW (s1), thus the assertion. In the case E7(a1), we construct the centraliser by hand,
which we will do now.

E7(a1): Using Bourbaki’s notation [Bou68], the following roots give an E7(a1)-diagram:

e1 + e3, e4 + e1, e5 − e4, e6 − e5

e3 − e2, e3 − e1, 1/2(e1 + e8)− 1/2(e2 + e3 + e4 + e5 + e6 + e7).

Using the given roots we see that CPm(s1) is related to the root system generated by
e6− e5, e5 + e6, e1 + e3, e4 + e1, e3− e2, e3− e1. Thus 〈P,CPm

(s1)〉 is generated by the
reflections related to the roots e6−e5, e5 +e6, e1 +e3, e4 +e1, e3−e2, e3−e1, 1/2(e1 +
e8)− 1/2(e2 + e3 + e4 + e5 + e6 + e7), which generate a root system of type A1 ×D6.
Hence we get the assertion in this case as well.

19



Case n = 8:
Type of w P Pm CPm

(s1) P ∩ Pm

E8(a1) A1 × E6 D7 A2
1 ×D5 A1 ×D5

E8(a2) A1 × E6 D7 A2
1 ×D5 A1 ×D5

E8(a3) A1 × E6 E7 A1 ×D6 A1 ×A5

E8(a4) A1 × E6 D7 A2
1 ×D5 A1 ×D5

E8(a5) A1 × E6 D7 A2
1 ×D5 A1 ×D5

E8(a6) A1 ×D5 E7 A1 ×D6 A1 ×D5

E8(a7) A1 × E6 E7 A1 ×D6 A1 ×D5

E8(a8) A1 ×D4 E7 A1 ×D6 A1 ×A3
1

Here CW (s1) is of type A1×E7. In the cases where Pm is of type E7, the overgroups
of CPm

(s1) in CW (s1) are

CPm(s1) = Z2 × Z5
2 o Sym(6) < Z2

2 × Z5
2 o Sym(6) < Z2 × E7 = CW (s1).

It is straightforward to see that the index |P : P ∩ Pm| > 2 in all cases and thereby
obtain 〈P,CPm

(s1)〉 = CW (s1), which is the assertion. Thus, it remains to consider
the cases where Pm is of type D7. In these cases P is a maximal subgroup of CW (s1),
but CPm(s1) is not contained in P , which also shows the assertion.

Theorem 3.12. Let W = W (En) be a Coxeter group of type En, n ∈ {6, 7, 8}, and
w a proper quasi-Coxeter element in W . Then the interval group G([1, w]) is not
isomorphic to the Artin group A(En).

Proof. Let w be a proper quasi-Coxeter element in W , and let P := 〈si | 2 ≤ i ≤ n〉.
According to our setting, the Carter diagram of w where we remove the vertex related
to s1 contains a quadrangle. Therefore, as in the proof of Proposition 3.9, we get by
induction that the rank of the abelianisation U is at most |T | − 2 where T is the set
of reflections in W . Therefore, Theorems 3.1 and 3.3 yield that A(En) and G([1, w])
are not isomorphic.

4 Open questions
Since each interval group related to a proper quasi-Coxeter element is not isomorphic
to the corresponding Artin group, we will develop some open questions that are
originally considered in the theory of Artin groups and Garside groups. A positive
answer to all these questions exist for interval groups related to Coxeter elements (the
case of Artin groups). So the questions are still open for the interval groups related
to proper quasi-Coxeter elements.

(a) Can we solve the word and conjugacy problems for the interval groups?

(b) Is the centre of each interval group infinite cyclic? Note that a certain power of
the lift of the quasi-Coxeter element to the interval group is always central.

(c) Are the interval groups torsion-free?

(d) Is the monoid defined from the presentation in Proposition 2.15 (viewed as a
monoid presentation) cancellative? Does it inject in the corresponding interval
group?

(e) Can we describe the parabolic subgroups of the interval groups?

(f) Is the interval complex related to the poset of non-crossing partitions of a proper
quasi-Coxeter element a classifying space for the interval group? This question
is relevant to the K(π, 1) conjecture for Artin groups.
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