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Abstract

We prove that the rapid decay property (RD) of groups is preserved
by graph products defined on finite simplicial graphs.
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1 Introduction

The main result proved in this paper is that the graph product of finitely many
groups with the rapid decay property (RD) has the same property. This is
stated formally in Section 4 as Theorem 4.1.

We call a function ℓ : G→ R a length function for a group G if it satisfies

ℓ(1G) = 0, ℓ(g−1) = ℓ(g), ℓ(gh) ≤ ℓ(g) + ℓ(h), ∀g, h ∈ G.

Following Jolissaint [17], a group G is said to have RD if the operator norm ||.||∗
for the group algebra CG is bounded by a constant multiple of the Sobolev norm
||.||2,r,ℓ, a norm that is a variant of the l2 norm weighted by a length function ℓ
for G.

More precisely, RD holds for G if there are constants C, r and a length function
ℓ on G such that for any φ, ψ ∈ CG,

||φ||∗ := sup
ψ∈CG

||φ ∗ ψ||2
||ψ||2

≤ C||φ||2,r,ℓ.

Here, φ ∗ψ denotes the convolution of φ and ψ, ||.||2 the standard l2 norm, and
||.||2,r,ℓ the Sobolev norm of order r with respect to ℓ. So we have:

φ ∗ ψ(g) =
∑

h∈G

φ(h)ψ(h−1g),

||ψ||2 =

√

∑

g∈G

|ψ(g)|2,

||φ||2,r,ℓ =

√

∑

g∈G

|φ(g)|2(1 + ℓ(g))2r.
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A brief introduction to RD is given in [2]; it is relevant to the Baum-Connes
and Novikov conjectures (see an account in [22]). RD was originally studied by
Jolissaint [17], after it emerged from work of Haagerup [11], who proved it for
free groups. Jolissaint extended Haagerup’s methods to prove it for classical
hyperbolic groups (i.e. discrete cocompact groups of isometries of hyperbolic
space), and to prove that free and direct products of groups with RD inherit
the property, as do subgroups; de la Harpe [14] extended Jolissaint’s arguments
for classical hyperbolic groups to derive RD for word hyperbolic groups. More
recently, Drutu and Sapir have shown that a group that is hyberbolic relative
to a family of parabolic subgroups with RD must itself have RD [9]. In all this
work the proofs focus on the factorisations of geodesic words. Other authors
prove RD through examination of actions of the group [21, 2].

The graph product construction is a natural generalisation of both direct and
free products. Given a finite simplicial graph Γ with a group attached to each
vertex, the associated graph product is the group generated by the vertex groups
with the added relations that elements of groups attached to adjacent vertices
commute; the representation of such a group as a graph product of directly
indecomposable groups is proved to be unique [20].

Right-angled Artin groups [3] (also known as graph groups) and right-angled
Coxeter groups arise in this way, as the graph products of infinite cyclic groups
and cyclic groups of order 2 respectively, and have been widely studied; some
groups with rather interesting properties arise via graph products, including a
group (a subgroup of a right-angled Artin group) that has FP but is not finitely
presented [1] and a group (F2 × F2) with insoluble subgroup membership prob-
lem [19]. Both right-angled Artin groups and right-angled Coxeter groups are
already known to possess RD, through their actions on CAT(0) cube complexes
[2] (indeed all finite rank Coxeter groups possess RD for this reason [6]).

Graph products were introduced by Green in her PhD thesis [10] where, in
particular, a normal form was developed and the graph product construction
was shown to preserve residual finiteness; this work was extended by Hsu and
Wise in [13] where, in particular, right-angled Artin groups were shown to em-
bed in right-angled Coxeter groups and hence to be linear. The preservation
of semihyperbolicity, automaticity (as well as asynchronous automaticity and
biautomaticity) and the possession of a complete rewrite system under graph
products is proved in [12], necessary and sufficient conditions for the preserva-
tion of hyperbolicity in [18], the question of when the group is virtually free in
[16], of orderability in [7]. Automorphisms and the structure of centralisers for
graph products of groups have been the subject of recent study, and in particu-
lar graph products defined over random graphs have provoked some interest for
their applications [8, 5, 4].

Our proof that the graph product construction preserves rapid decay will build
on the methods used by Jolissaint for direct and free products [17]. We use
a reformulation of RD due to Jolissaint, explained in Section 2 below, which
compares norms on elements of CG with restricted support. We examine in
Section 3 the geodesic decompositions of elements in a graph product, and show
that they satisfy particularly useful properties, which will be applied in our
proof. Section 4 states our main result, Theorem 4.1, and reduces its proof to
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the proof of a further technical condition, which is similar to that of Jolissaint’s
reformulation, but easier to verify in the context of graph and free products;
the same condition is used in [17] for free products. The remaining two sections
are devoted to the proof of Proposition 4.3, thereby completing the proof of
Theorem 4.1

2 A reformulation of the rapid decay property

By [17, Lemma 2.1.3], any length function ℓ on G is equivalent to one with
ℓ(G) ⊆ N and ℓ(g) > 0 ∀g 6= 1. Since RD is invariant under length equivalence,
by [17, Remark 1.1.7], we shall assume from now on that all length functions
have this property.

Given a length function ℓ on G, and k ∈ N, we define Ck(ℓ) to be the set
{g ∈ G | ℓ(g) = k}. We write χk for the characteristic function on Ck, and for
φ ∈ CG, we write φk for the pointwise product φ.χk.

It is proved by Jolissaint [17, Proposition 1.2.6] that RD for G is equivalent to
the following condition:

(∗) There exist c, r > 0 such that ∀φ, ψ ∈ CG, k, l,m ∈ N :

||(φk ∗ ψl)m||2 ≤ c||φk||2,r,ℓ||ψl||2 if |k − l| ≤ m ≤ k + l,
||(φk ∗ ψl)m||2 = 0 otherwise.

It follows from the properties of a length function that ||(φk ∗ψl)m||2 = 0 for m
outside the range [|k − l|, k + l]. Hence we shall establish RD by verifying the
following condition:

(∗∗) There exists a polynomial P (x) such that ∀φ, ψ ∈ CG, k, l,m ∈ N :

|k − l| ≤ m ≤ k + l ⇒ ||(φk ∗ ψl)m||2 ≤ P (k)||φk||2||ψl||2.

3 Graph products

Graph products of groups are studied in detail in [10], and we shall make use
of the results from that thesis. Let Γ = (V,E) be a finite simplicial graph,
together with vertex groups Gv for each v ∈ V . The associated graph product
G is defined to be the quotient of the free product of the groups Gv by the
normal closure of all the commutators [g, g′] for which g ∈ Gv, g

′ ∈ Gw and
{v, w} is an edge of the graph. We write G = G(Γ;Gv, v ∈ V ).

Given such a group G, we define K to be the set of cliques of the associated
graph Γ, which we can identify with a set of subsets of the vertex set V of Γ.
We define Km to be the subset of K of cliques of size m. Given any subset J
of V we define GJ to be the subgroup of G generated by the elements of its
subgroups Gv with v ∈ J . It follows from [10, Proposition 3.31] that GJ is
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naturally isomorphic to the graph product defined by the induced subgraph of
Γ with vertex set J . If J is a clique, then GJ is the direct product of its vertex
groups.

Every element of the group G can be written as a product y1 · · · yk for k ≥ 0
and with each yi in a vertex group Gvi ; that is, each element of the group has
a representation as a word over the set S = ∪v∈V (Gv \ {1}). We call such a
representation an expression, the elements yi the syllables of the expression, and
say that the expression has syllable length k; we define the syllable length of g,
λ(g), to be the minimum of the syllable lengths of expressions for g, and say
that an expression for g is reduced if it has syllable length λ(g). The function λ
is easily seen to be a length function, but it is not the one that we shall use to
prove RD.

We define Λk = {g ∈ G : λ(g) = k}.

Note that when G is a free product, every expression for which consecutive
yis come from distinct vertex groups is reduced, and each reduced expression
corresponds to a distinct element of G. That is not true in general. But it is
proved in [10, Theorem 3.9] that any expression for g can be transformed to any
reduced expression by a sequence of replacements of the form y′y → yy′ where
y, y′ belong to commuting vertex groups, or y′y′′ → y, where y′y′′ = y is a
relation holding between three elements of one of the vertex groups, or deletion
of y′y′′ where the y′, y′′ are mutually inverse elements of a vertex group. Hence
any reduced expression for an element g involves the same syllables, but the
order of the syllables in the expression is not determined.

We shall need to estimate the number of factorisations of elements in graph
products. For g ∈ Λk+l, we use the notation

F l
k(g) := {(g1, g2) | g =G g1g2, λ(g1) = k, λ(g2) = l},

Flk := sup
g∈Λk+l

|F l
k(g)|.

Similarly, given a clique J ∈ K and g ∈ Λk+l+|J|, we use the notation

F l
k(J, g) := {(g1, s, g2) | g =G g1sg2, λ(g1) = k, λ(g2) = l, s ∈ GJ , λ(s) = |J |},

Flk(J) := sup
g∈Λk+l+|J|

|F l
k(J, g)|.

By considering factorisations of g−1, we see that Flk = Fkl and Flk(J) = Fkl (J).

Let g, h ∈ G. We say that h is a left divisor of g, if λ(g) = λ(h) + λ(h−1g),
or, equivalently, if h has a minimal expression v that is a prefix of a minimal
expression w for g. We define right divisors similarly.

We shall need

Lemma 3.1. For each J ∈ K, Flk(J) is bounded by a polynomial in min(k, l).

Proof. Since Flk(J) = Fkl (J), it is sufficient to prove that Flk(J) is bounded by
a polynomial in k.
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Let g ∈ Λm with m ≥ k+ l, and consider factorisations g = g1sg2 with g1 ∈ Λk,
g2 ∈ Λl, and s ∈ GJ with λ(s) = |J |.

We start by bounding the number of left divisors g1 of g with g1 ∈ Λk. Suppose
that y1y2 · · · ym is a reduced expression for g, with each yi an element of a vertex
group. Then g1 = yσ(1) · · · yσ(k), where σ is a permutation of {1, . . . ,m}. When
we transform the original expression y1y2 · · · ym to the new expression, using
shuffles, there is no need to swap any of the syllables in g1 among themselves,
so we can assume that σ(1) ≤ σ(2) ≤ · · · ≤ σ(k).

Let us call the syllable yσ(i) with 1 ≤ i ≤ k unconstrained if its vertex group
commutes with the vertex groups of each of yσ(i+1), . . . , yσ(k). (In particular,
yσ(k) is unconstrained.)

We claim that g1 is uniquely determined by its unconstrained syllables yσ(i)
with 1 ≤ i ≤ k. To show this, suppose that g1, g

′
1 ∈ Λk are left divisors of g

corresponding to permutations σ, σ′ of {1, . . . ,m}, where g1, g
′
1 have the same

unconstrained syllables. Suppose that g1 6= g′1, and let i be maximal such
that yσ(i) is a syllable of g1 but not of g′1. Then, by assumption, yσ(i) is not
unconstrained, so there exists j with i < j ≤ k such that yσ(i) does not commute
with yσ(j). By maximality of i, yσ(j) is a syllable of g′1. Since yσ(i) and yσ(j) do
not commute, yσ(i) must remain to the left of yσ(j) after any shuffles of g. So
yσ(i) must be a syllable of g′1, a contradiction.

If there were two unconstrained syllables in g1 from the same vertex group Gv,
they could be moved together, thereby shortening the expression; hence there is
at most one. Since g1 has syllable length k, an unconstrained syllable yσ(i) in g1
from Gv must be among the first k syllables in y1y2 · · · ym that come from Gv.
Hence there are k + 1 possible ways of selecting (0 or 1) syllables of y1y2 · · · ym
from Gv that will be unconstrained in g1. This gives (k + 1)|V | choices in total
for the unconstrained syllables of g1, and hence (k + 1)|V | choices for the left
divisor g1.

Similarly, we have an upper bound of (|J |+1)|V | for the number of left divisors
of length |J | of g−1

1 g for a given g1. In fact, the bound for the number of choices
for s is (|J |+1)|J|, as s ∈ GJ . The right divisor g2 is then completely determined
by g, g1 and s. This results in the inequality Flk(J) ≤ (k+1)|V |(|J |+1)|J|, giving
the required polynomial bound in k.

Lemma 3.2. Suppose that g, h1, h2 ∈ L with g =G h1h2, h1 ∈ Λk, h2 ∈ Λl, and
g ∈ Λk+l−q with q > 0. Then h1 =G g1s1w and h2 =G w−1s2g2, where:

(1) s1, s2 ∈ J for some J ∈ K, and λ(s1) = λ(s2) = λ(s1s2) = |J |,

(2) q = |J |+ 2λ(w).

Proof. Suppose first that there is no cancellation between h1 and h2, that is,
when we reduce the expression h1h2, no syllable becomes equal to the identity.
Then pick a right divisor s1 of h1, and a left divisor s2 of h2, both minimal with
respect to syllable length, such that λ(s1s2) = λ(s1) + λ(s2) − q. Minimality
ensures that every syllable of s1 (or s2) must merge without cancelling with a
symbol of s2 (or s1). So λ(s1) = λ(s2) = λ(s1s2), the syllables within each
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of s1 and s2 must commute, and there is a clique J ⊂ Γ of size q such that
s1, s2, s1s2 ∈ GJ .

If there is cancellation between h1 and h2, then we can find a right divisor w of
h1 such that w−1 is a left divisor of h2. We choose w of maximal syllable length,
so that h1 = h′1w and h2 = w−1h′2 for some h′1, h

′
2 ∈ G, and no cancellation

occurs between h′1 and h′2. Applying the above argument to h′1 and h′2, we find
a clique J of size q − 2λ(w), a right divisor s1 of h′1, and a left divisor s2 of h′2,
with λ(s1) = λ(s2) = λ(s1s2) = |J |.

4 Main result

We prove

Theorem 4.1. Suppose that G = G(Γ;Gv, v ∈ V ) is a graph product of groups
defined with respect to a finite simplicial graph Γ = (V,E), and suppose that
each vertex group Gv satisfies RD. Then G satisfies RD.

The proof generalises Jolissaint’s proof in [17] of RD for free products, which is
itself a generalisation of Haagerup’s proof for free groups. We use the result of
[17, Lemma 2.1.2], which implies (although it is not stated explicitly) that RD
is preserved by taking direct products, and rely on the existence of polynomial
bounds relating to factorisation in graph products proved in Lemma 3.1 and
Lemma 3.2.

The following easy consequence of the Cauchy-Schwarz inequality will be used
frequently.

Lemma 4.2. For any positive integer M and real numbers a1, . . . , aM ,

(

M
∑

i=1

ai

)2

≤M

(

M
∑

i=1

a2i

)

.

The proof of Theorem 4.1 that follows depends on Proposition 4.3, which is
stated within the proof; we defer the proof of that to Section 6.

Proof of Theorem 4.1: For each v ∈ V we choose a length function ℓv on Gv
with respect to which Gv has rapid decay. Then, given g ∈ G and a reduced
expression g = y1 · · · yk for G, with yj ∈ Gvj , we define

ℓ(g) =

k
∑

j=1

ℓvj (yj).

That ℓ is both well defined and a length function follows easily from [10, Theorem
3.9]. On subgroups GJ with J ∈ K, we see that ℓ restricts to ℓJ , defined in the
same way as a sum of functions ℓvj with vj ∈ J ; it follows from [17, Lemma
2.1.2] that GJ satisfies RD with respect to ℓJ .

6



We prove rapid decay with respect to the length function ℓ by verifying the
condition (∗∗) of Section 2. But rather than prove that directly we shall deduce
it from a condition on the length function λ, that is stated as Proposition 4.3.

Recall that Λk is defined as the set {g ∈ G : λ(g) = k}. We now define χ(k)

to be the characteristic function on Λk and φ(k) to be the pointwise product
φ.χ(k). In general a function labelled with the subscript (k) is understood to
have support on Λk.

We shall prove the following in Section 6.

Proposition 4.3. ∃ c, r > 0 such that for all φ, ψ ∈ CG, k, l,m ∈ N, and
|k − l| ≤ m ≤ k + l,

||(φ(k) ∗ ψ(l))(m)||2 ≤ c||φ(k)||2,r,ℓ||ψ(l)||2.

To derive our main result from this proposition, we shall use it to deduce the
condition (∗∗) of Section 2, that is, we shall deduce the similar condition in
which restrictions to Λk,Λl,Λm are replaced by restrictions to Ck, Cl, Cm. (But
note that both of the length functions λ and ℓ are involved in the proposition
statement.) Jolissaint’s proof of RD for free products follows exactly the same
strategy, and the argument below is basically his, with some slight modification
of notation to match our own. We suppose that k, l,m are fixed in the appro-
priate range. We write φ′ rather than φk and ψ′ rather than ψl, to make our
notation less cumbersome.

Since ℓ(g) ≥ 1 for all g ∈ G \ {1}, we have Ck ⊆ ∪kj=0Λj and Cl ⊆ ∪li=0Λi,

and hence φ′ =
∑k
j=0 φ

′
(j), ψ

′ =
∑l
i=0 ψ

′
(i). Similarly, for fixed j, we have

|(φ′(j) ∗ ψ
′)m(g)| ≤ |

∑m
p=0(φ

′
j ∗ ψ

′)(p)(g)|, for all g ∈ G. (Note that we dropped

the restriction to Cm on the right hand side of this inequality.) Hence

||(φ′(j) ∗ ψ
′)m||22 ≤

m
∑

p=0

||(φ′(j) ∗ ψ
′)(p)||

2
2.

Now, in any product of group elements g1g2 = g with g1 ∈ Λi, g2 ∈ Λj , g ∈ Λp,
we must have p ≤ i + j, i ≤ p + j, j ≤ p + i. Hence in each of the terms
(φ′(j) ∗ψ

′)(p) in the sum on the right hand side of the above inequality, for fixed

j and p, the support of ψ′ lies in the union of the Λi with |j − p| ≤ i ≤ j + p,
and so

m
∑

p=0

||(φ′(j) ∗ ψ
′)(p)||

2
2 ≤

m
∑

p=0

||

j+p
∑

i=|j−p|

(φ′(j) ∗ ψ
′
(i))(p)||

2
2

Since there are at most 2j + 1 values of i in each of the ranges [|j − p|, j + p],
we can use Lemma 4.2 to bound the right hand side above by

(2j + 1)

m
∑

p=0

j+p
∑

i=|j−p|

||(φ′(j) ∗ ψ
′
(i))(p)||

2
2.

It follows from Proposition 4.3 that, for |j − i| ≤ p ≤ j + i,

||(φ′(j) ∗ ψ
′
(i))(p)||2 ≤ c||φ′(j)||2,r,ℓ||ψ

′
(i)||2.

7



For other values of p, the left hand side is zero. Hence

||(φ′(j) ∗ ψ
′)m||22 ≤ c2(2j + 1)||φ′(j)||

2
2,r,ℓ

m
∑

p=0

j+p
∑

i=|j−p|

||ψ′
(i)||

2
2.

Since |i− j| ≤ p ≤ i + j, for a given value of i, there are at most 2j + 1 values
of p in the above summation, and so we have

||(φ′(j)∗ψ
′)m||22 ≤ c2(2j+1)2||φ′(j)||

2
2,r,ℓ

j+m
∑

i=0

||ψ′
(i)||

2
2 ≤ c2(2j+1)2||φ′(j)||

2
2,r,ℓ||ψ

′||22.

Now, using the triangle inequality together with Lemma 4.2 again, we have

||(φk ∗ ψl)m||22 = ||(φ′ ∗ ψ′)m||22 ≤ (

k
∑

j=0

||φ′(j) ∗ ψ
′)m||)2

≤ (k + 1)
k
∑

j=0

||(φ′(j) ∗ ψ
′)m||2

≤ c2(k + 1)

k
∑

j=0

(2j + 1)2||φ′(j)||
2
2,r,ℓ||ψ

′||22

≤ c2(k + 1)(2k + 1)2||φk||
2
2,r,ℓ||ψl||

2
2

= P (k)||φk||
2
2||ψl||

2
2,

where the polyonomial P has degree 3 + 2r. So we have deduced (∗∗).

The proof of the theorem will be complete once Proposition 4.3 is proved. �

5 Technicalities of the proof of Proposition 4.3

In an attempt to make the proof of Proposition 4.3 more readable we start with
some technical results and definitions.

For a function φ(k) and p ≥ 0, we can define functions φ
(p)
(k−p) and

(p)φ(k−p) by

φ
(p)
(k−p)(u) =

{ √

∑

w∈Λp
|φ(k)(uw)|2 if u ∈ Λk−p

0 otherwise

(p)φ(k−p)(u) =

{ √

∑

w∈Λp
|φ(k)(w−1u)|2 if u ∈ Λk−p

0 otherwise

Note that these functions are non-negative real-valued; we shall sometimes make
use of that fact as we bound sums.

Lemma 5.1.

||φ
(p)
(k−p)||

2
2 ≤ Fpk−p||φ(k)||

2
2 and ||(p)φ(k−p)||

2
2 ≤ Fpk−p||φ(k)||

2
2.
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Proof.

||φ
(p)
(k−p)||

2
2 =

∑

u∈Λk−p

∑

w∈Λp

|φ(k)(uw)|
2

≤ Fpk−p

∑

h∈Λk

|φ(k)(h)|
2

= Fpk−p||φ(k)||
2
2

The second inequality follows similarly, since Fpk−p = Fk−pp .

For 0 ≤ i ≤ k and g ∈ Λk−i, we define functions φg(i) and
gφ(i) by

φg(i)(v) =

{

φ(k)(vg) if vg ∈ Λk
0 otherwise

gφ(i)(v) =

{

φ(k)(gv) if gv ∈ Λk
0 otherwise

6 Proof of Proposition 4.3

Proof. First we deal with the case where m = k + l.

By Lemma 4.2, for each g ∈ Λk+l we have

|φ(k) ∗ ψ(l)(g)|
2 = |

∑

(h1,h2)∈F l
k
(g)

φ(k)(h1)ψ(l)(h2)|
2

≤ Flk
∑

(h1,h2)∈F l
k
(g)

|φ(k)(h1)|
2|ψ(l)(h2)|

2.

Hence

||(φ(k) ∗ ψ(l))(k+l)||
2
2 ≤ Flk

∑

g∈Λk+l

∑

(h1,h2)∈F l
k
(g)

|φ(k)(h1)|
2|ψ(l)(h2)|

2

≤ Flk
∑

h1∈Λk,h2,∈Λl

|φ(k)(h1)|
2|ψ(l)(h2)|

2

= Flk
∑

h1∈Λk

|φ(k)(h1)|
2
∑

h2∈Λl

|ψ(l)(h2)|
2

= Flk||φ(k)||
2
2||ψ(l)||

2
2,

which proves (∗∗).

So now suppose that m = k + l − q, for q > 0, and that g ∈ Λk+l−q .

By Lemma 3.2, for each factorisation of g as a product h1h2 with h1 ∈ Λk,
h2 ∈ Λl, there is a 5-tuple (g1, g2, s1, s2, w) of elements with syllable lengths
k − q + p, l − q + p, q − 2p, q − 2p, p, for which h1 = g1s1w, h2 = w−1s2g2,
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s := s1s2 ∈ GJ has syllable length q − 2p, and s1, s2, s are all elements of GJ
for some J ∈ Kq−2p.

For ease of notation we now define, for s ∈ GJ ,

F(J, s) := {(s1, s2) ∈ GJ ×GJ : s = s1s2},

FJ(J, s) := {(s1, s2) ∈ GJ ×GJ : s = s1s2, λ(s1) = λ(s2) = |J |}.

Now for any g ∈ Λk+l−q, |φ(k) ∗ ψ(l)(g)| is bounded above by

p=⌊q/2⌋
∑

p = 1,
J ∈ Kq−2p

∑

(g1, s, g2) ∈

F l−q+p

k−q+p
(J, g)

∑

(s1,s2)∈F(J,s)

∑

w∈Λp

|φ(k)(g1s1w)ψ(l)(w
−1s2g2)|,

by the triangle inequality.

By Cauchy-Schwarz

∑

w∈Λp

|φ(k)(g1s1w)ψ(l)(w
−1s2g2)| ≤

√

∑

w∈Λp

|φ(k)(g1s1w)|2
√

∑

w∈Λp

|ψ(l)(w−1s2g2)|2

= φ
(p)
(k−p)(g1s1)×

(p)ψ(l−p)(s2g2)

= g1φ
(p)
(q−2p)(s1)×

(p)ψg2(q−2p)(s2).

Further,

∑

(s1,s2)∈FJ (J,s)

g1φ
(p)
(q−2p)(s1)×

(p)ψg2(q−2p)(s2) ≤ g1φ
(p)
(q−2p) ∗

(p)ψg2(q−2p)(s),

where the convolution here is over GJ , not over G.

Then we apply the Lemma 4.2 to see that

|φ(k) ∗ ψ(l)(g)|
2 ≤











p=⌊q/2⌋
∑

p = 1,
J ∈ Kq−2p

∑

(g1, s, g2) ∈

F l−q+p

k−q+p
(J, g)

g1φ
(p)
(q−2p) ∗

(p)ψg2(q−2p)(s)











2

≤ MF(k, q, l)

p=⌊q/2⌋
∑

p = 1,
J ∈ Kq−2p

∑

(g1, s, g2) ∈

F l−q+p

k−q+p
(J, g)

(

g1φ
(p)
(q−2p) ∗

(p)ψg2(q−2p)(s)
)2

.

where MF(k, q, l) :=
∑⌊q/2⌋

p=1

∑

J∈Kq−2p
Fl−q+pk−q+p(J) is bounded by Q(k) for some

polynomial Q, by Lemma 3.1, and since there are finitely many possible cliques
J . Hence
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||(φ(k) ∗ ψ(l))(m)||
2
2 =

∑

g∈Λm

|φ(k) ∗ ψ(l)(g)|
2

≤ Q(k)

p=⌊q/2⌋
∑

p = 1,
J ∈ Kq−2p

∑

g1 ∈ Λk−q+p

s ∈ GJ ,
g2 ∈ Λl−q+p

(g1φ
(p)
(q−2p) ∗

(p)ψg2(q−2p)(s))
2

= Q(k)

p=⌊q/2⌋
∑

p = 1,
J ∈ Kq−2p

∑

g1 ∈ Λk−q+p

g2 ∈ Λl−q+p

||g1φ
(p)
(q−2p) ∗

(p)ψg2(q−2p))||
2
2;GJ

.

But now, since RD holds with respect to ℓJ in each of the groups GJ , we have

||g1φ
(p)
(q−2p) ∗

(p)ψg2(q−2p)||
2
2;GJ

≤ c2J ||
g1φ

(p)
(q−2p)||

2
2,rJ ,ℓJ ;GJ

||(p)ψg2(q−2p)||
2
2;GJ

.

We deduce easily from this that

∑

g1 ∈ Λk−q+p,
g2 ∈ Λl−q+p

||g1φ(q−2p) ∗ ψ
g2
(q−2p)||

2
2;GJ

≤ c2J
∑

g1∈Λk−q+p

||g1φ
(p)
(q−2p)||

2
2,rJ ,ℓJ ;GJ

×

∑

g2∈Λl−q+p

||(p)ψg2(q−2p)||
2
2;GJ

.

Then, for c = max cJ and r = max rJ , we have

p=⌊q/2⌋
∑

p = 1,
J ∈ Kq−2p

∑

g1 ∈ Λk−q+p

g2 ∈ Λl−q+p

||g1φ
(p)
(q−2p) ∗

(p)ψg2(q−2p)||
2
2;GJ

≤ c2
p=⌊q/2⌋
∑

p = 1,
J ∈ Kq−2p





∑

g1∈Λk−q+p

||g1φ
(p)
(q−2p)||

2
2,rJ ,ℓJ ;GJ

∑

g2∈Λl−q+p

||(p)ψg2(q−2p)||
2
2;GJ





≤ c2











p=⌊q/2⌋
∑

p = 1,
J ∈ Kq−2p

∑

g1∈Λk−q+p

||g1φ
(p)
(q−2p)||

2
2,r,ℓJ ;GJ











×











p=⌊q/2⌋
∑

p = 1,
J ∈ Kq−2p

∑

g2∈Λl−q+p

||(p)ψg2(q−2p)||
2
2;GJ











.
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But

p=⌊q/2⌋
∑

p = 1,
J ∈ Kq−2p

∑

g1∈Λk−q+p

||g1φ
(p)
(q−2p)||

2
2,r,ℓJ ;GJ

=

p=⌊q/2⌋
∑

p = 1,
J ∈ Kq−2p

∑

g1 ∈ Λk−q+p,
s ∈ GJ

w ∈ Λp

|φ(k)(g1sw)|
2(1 + ℓJ(s))

2r .

Since ⌊q/2⌋ ≤ k and the number of sets J is bounded, Lemma 3.1 implies that
the number of factorisations of a fixed g′ ∈ Λk as g1sw in the above sum is at
most P (k) for some polynomial P . So the sum is bounded above by

P (k)
∑

g′∈Λk

|φ(k)(g
′)|2(1 + ℓ(g′))2r = P (k)||φ(k)||

2
2,r,ℓ,

and similarly

p=⌊q/2⌋
∑

p = 1,
J ∈ Kq−2p

∑

g2∈Λl−q+p

||(p)ψg2(q−2p)||
2
2;GJ

≤ P (k)||ψ(l)||
2
2.

Hence

||(φ(k) ∗ ψ(l))(m)||
2
2 ≤ c2Q(k)P (k)2||φ(k)||

2
2,r,ℓ||ψ(l)||

2
2

≤ c2||φ(k)||
2
2,r+deg(Q)+2 deg(P ),ℓ||ψ(l)||

2
2,

where the final inequality uses the fact that k ≤ ℓ(g) for all g ∈ Λk. This
completes the proof of Proposition 4.3.
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