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Abstract

We extend results of [8] and prove shortlex automaticity and regu-
larity of geodesics in a family of Artin groups that includes all groups
of large type but also allows some commuting pairs of generators.

1 Introduction and notation

The purpose of this article is to extend the results of [8] to cover a larger
class of Artin groups. It was proved there that every Artin group of large
type is shortlex automatic over its natural generating set, and that its set
of geodesic words over those generators is regular. We extend these results
beyond large type Artin groups to allow Artin groups in which some pairs
of generators commute, as explained below.

The main results in this article are Theorem 2.1, where Artin groups sat-
isfying our new hypothesis are proved to be shortlex automatic over their
natural generating sets, and Theorem 3.1, where those same Artin groups
are proved to satisfy the ‘falsification by fellow traveller property’ (FFTP),
from which regularity of their sets of geodesics can be deduced as an imme-
diate corollary.

Various other types of Artin groups have been proved to be automatic and,
in some cases, biautomatic. This was done, for example, for the Artin groups
of finite or spherical type in [3], and for right angled Artin groups in [7, 11].
But while it is proved that right-angled and large type Artin groups are
shortlex automatic over their natural generating sets, that is not proved for
spherical type groups, and indeed computational evidence (produced using
[9]) suggests that it is not true for those of rank at least 3. Each extension
of the types of Artin groups for which automaticity has been established
adds evidence to the conjecture that all Artin groups are (bi)automatic,
but we are still a long way from settling that question. It is not even known
whether they all have solvable word problem.
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For letters x, y we define m(x, y) to be the product of m alternating xs and
ys that starts with x, and (x, y)m to be the product of m alternating xs and
ys that ends with y.

The standard presentation for an Artin group over its standard generating
set X = {a1, . . . , an} is

〈a1, . . . , an | mij
(ai, aj) = mij

(aj, ai) for each i 6= j〉,

where (mij) is a Coxeter matrix (a symmetric n× n matrix with entries in
N ∪ {∞}, mii = 1,mij ≥ 2, ∀i 6= j).

We call a pair of generators xi, xj a braid pair if 3 ≤ mij < ∞, a free pair
if mij = ∞, or a commuting pair if mij = 2. By definition, an Artin group
has large type if every pair of generators is either a braid pair or a free pair.
Our hypothesis allows commuting pairs too under the following restriction:

if a triple of generators contains a commuting pair, then either
the other two pairs are both commuting, or at least one of them
is free.

We shall call Artin groups with this property sufficiently large. The class of
sufficiently large Artin groups has a significant intersection with the class of
locally non-spherical Artin groups, which are considered in [4], where they
are proved to have soluble word problem, extending the results of Appel
and Schupp for large type groups [1, 2]. But note that we allow triples
of commuting pairs of generators, which violate the locally non-spherical
condition, and we disallow many triples of the form {2,m, n} that do not
violate that condition.

Since our proofs are extensions of the corresponding proofs in [8], and use
the same notation, but extended to the more general context, realistically,
reading this paper in detail can only be undertaken in conjunction with
reading our earlier paper.

As in [8] we derive our results from descriptions of the sets of shortlex mini-
mal and geodesic representatives of elements of an Artin group satisfying our
hypotheses, together with the processes that reduce input words to elements
of those sets. We perform our reductions using sequences of τ -moves, just
as we did in [8]; we just need to extend our definition of a τ -move. Hence
we will now have two types of τ -moves: braid- or β-moves; and commuting-
or κ-moves. The τ -moves of [8] were all braid moves; we shall recall the
definition of those below, once we have established our notation.

We define X−1 = {x−1 : x ∈ X}, A = X ∪ X−1, and call the elements of
A letters. We extend our definitions of braid, free and commuting pairs of
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generators to letters in the obvious way. The letters x and x−1 are said to
have name x. A word is a sequence of letters, and for a word w and letter
x, x ∈ w means ‘x is a letter of w’, while for B ⊆ A, w ∩ B consists of
those letters of B within w. If we say w involves x, then we mean x ∈ w or
x−1 ∈ w.

We shall apply braid (β-) moves to 2-generator words over braid pairs of
generators xi, xj ; just as in [8]. We call 2-generator subwords of the form

p(x, y)ξ(z
−1, t−1)n or n(x

−1, y−1)ξ(z, t)p with p+n = mi,j (with some extra
conditions imposed when one of p, n is zero) critical (or β-critical). A β-move
interchanges the β-critical words p(x, y)ξ(z

−1, t−1)n and n(y
−1, x−1)δ(ξ)(t, z)p,

replacing w by τ(w).

In addition, we shall apply commuting (κ-) moves to words over sets of
generators any pair of which is either free or commuting. Specifically, let u
be a word over a subset XJ of the generating set, and let a be a letter that
commutes with all generators in XJ ; our main hypothesis ensures that in
this case any pair of generators in XJ is either commuting or free. Assume
also that u contains neither the letter a nor the letter a−1. Under these
conditions we define ua to be right κ-critical and au to be left κ-critical. We
define a rightward κ-move on w := au to be the substitution au → ua, and
a leftward κ-move on w := ua to be the substitution ua → au. We call the
result of such a substitution τ(w).

Note that if two words au1 and au2 are both left κ-critical then so is the
word au1u2, while if u1a and u2a are both right κ-critical then so is u1u2a.

When sequences of κ-moves and β-moves are applied, subwords that are
either maximal as 2-generator subwords or κ-maximal become important,
the first kind in relation to β-moves and the second kind in relation to
κ-moves. A subword w′ of a word w is called κ-maximal if

(i) all pairs of letters in w′ are either free or commuting,

(ii) each letter in w′ forms a free pair with the immediate predecessor
and successor of w′ in w (if they exist), and

(iii) no subword w′′ of w that strictly contains w′ satisfies both (i) and
(ii).

We extend our definitions of rightward and leftward reducing sequences in
[8] to allow κ-moves as well as β-moves.

We say that a freely reduced word w admits a rightward length reducing
sequence of length k:

(ui → τ(ui) : i = 1, . . . , k)

if w can be written as a concatenation w = αw1w2 · · ·wkγ, such that:
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(i) u1 := w1 is either β-critical or left κ-critical and so is ui for each
i = 2, . . . , k, where ui := l[τ(ui−1)]wi.

(ii) ui and ui+1 are not both κ-critical for 1 ≤ i < k.

(iii) l[τ(uk)] is the inverse of f[γ].

Note that condition (ii) is not hard to impose, since the concatenation of
two adjacent κ-critical subwords is κ-critical.

As in [8], we define u′l := pre[τ(ul)] for 1 ≤ l ≤ k. Then the rightward
length reducing sequence followed by the free cancellation of l[τ(uk)] with
f[γ] transforms w to αu′1u

′
2 · · · u

′

ksuf[γ].

We say that a freely reduced word w admits a leftward lex reducing sequence
of length k:

(ui → τ(ui) : i = 1, . . . , k)

if w can be written as a concatenation w = αwk · · ·w1γ, such that:

(i) u1 := w1 is either β-critical or right κ-critical and so is ui for each
i = 2, . . . , k, where ui := wif[τ(ui−1)].

(ii) ui and ui+1 are not both κ-critical for 1 ≤ i < k.

(iii) f[τ(uk)] is earlier in the lexicographic order of letters than f[uk].

As above, condition (ii) is not hard to impose.

As in [8], we define u′l := suf[τ(ul)] for 1 ≤ l < k, and u′k is not defined. Then
the leftward lex reducing sequence transforms w to ατ(uk)u

′

k−1 · · · u
′
1γ.

We define W to be the set of freely reduced words that admit no rightward
length reducing sequence or leftward lex reducing sequence of any length
k ≥ 1.

2 Proof of shortlex automaticity

This section is devoted to the proof of the following theorem.

Theorem 2.1 Let G be a sufficiently large Artin group, defined over its
standard generating set. Then G is shortlex automatic. Furthermore, the
set W defined above is the set of shortlex minimal representatives of the
elements of G.

We recall that G is shortlex automatic over X if the set of shortlex minimal
representatives of its elements as words over X is a regular set, satisfying a
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synchronous fellow traveller property [6]. Imitating the proof of [8, Theo-
rem 3.2], we can deduce Theorem 2.1 from the following three propositions,
whose statements appear identical to the statements of the corresponding
propositions in [8], but in fact apply under the more general hypotheses on
G of this paper, and with a more general definition of reducing sequence.

For the remainder of this section we assume that G satisfies the hypotheses
of Theorem 2.1, and that W is defined as above.

Proposition 2.2 Suppose that w ∈ W and g ∈ A is such that wg is freely
reduced but wg 6∈ W . Then a single rightward length reducing or leftward
lex reducing sequence followed by a free reduction in the rightward case can
be applied to wg to yield an element of W .

Now we define a map ρ : A∗ → W recursively as follows.

(i) For w ∈ W , ρ(w) := w.

(ii) For w ∈ W , g ∈ A and wg 6∈ W , if l[w] = g−1 then ρ(wg) :=
pre[w], but otherwise ρ(wg) is the element of W obtained from wg

as specified in Proposition 2.2.

(iii) For any w ∈ A∗ and g ∈ A, ρ(wg) := ρ(ρ(w)g).

Proposition 2.3 ρ(wgg−1) = w, ∀w ∈ W, g ∈ A.

Proposition 2.4 ρ(wmij
(ai, aj)) = ρ(wmij

(aj , ai)), ∀w ∈ W, 1 ≤ i, j ≤ n.

Before proving these three propositions we establish some technical lemmas.

Lemma 2.5 Suppose that wg is freely reduced and admits a rightward length
reducing sequence, with corresponding factorisation αw1 . . . wkg of wg, and
notation as above. Then either the suffix wkg of wg is 2-generator over a
pair of braid generators satisfying p(wkg)+n(wkg) ≥ m and hence contains
a β-critical subword, or it contains a right κ-critical suffix.

Proof: This is exactly as in [8, Lemma 3.6] if the final move of the rightward
length reducing sequence is a β-move. If it is a κ-move, we must have
uk = wk = g−1suf[wk] (when k = 1) or uk = g−1wk (when k > 1), and so
wkg contains the right κ-critical suffix suf[wk]g or wkg. �

As in [8], we call a rightward length reducing sequence for wg optimal if the
left hand end of w1 is further right in w than in any other such factorisation,
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and we call a leftward lex reducing sequence for wg optimal if the left hand
end of wk is further left in w than in any other such factorisation.

NB: in modifying the statements of two lemmas of [8] to get Lemmas 2.6, 2.7,
we have added the condition that w ∈ W , which certainly holds whenever
the lemma is applied. The purpose in adding that condition was to make
the statement of part (7) of each lemma a little more straightforward.

Lemma 2.6 For w ∈ W , suppose that wg admits an optimal rightward
length reducing sequence, with corresponding factorisation αw1 · · ·wkg of wg
and notation as above. Then for each l with 1 ≤ l ≤ k:

(1) If ul is β-critical then no proper suffix of ul is critical; hence ul has
one of the forms: p(x, y)ξ(z

−1, t−1)n with p > 0, or n(x
−1, y−1)ξ(z, t)p

with n > 0, where {x, y} = {z, t} = {ail , ajl}.

(2) If ul is β-critical, then u′l involves both of the generators ail and ajl.

(3) If ul is β-critical then p(u′l) + n(u′l) < m.

(4) Suppose that l > 1. If ul−1 is β-critical then f[u′l] 6∈ {a±1
il−1

, a±1
jl−1

},

and if further ul is κ-critical, then u′l ∩ {a±1
il−1

, a±1
jl−1

} = ∅. If ul−1 is

κ-critical but ul is β-critical then {f[u′l], x} is free for all x ∈ u′l−1.

(5) Suppose that l < k. If ul+1 is β-critical, then l[u′l] 6∈ {a±1
il+1

, a±1
jl+1

},

and if further ul is κ-critical, then u′l ∩ {a±1
il+1

, a±1
jl+1

} = ∅. If ul+1 is

κ-critical, then {l[u′l], x} is free for all x ∈ u′l+1.

Further, l[u′k] 6= g±1, and if uk is κ-critical, then u′k ∩ {g±1} = ∅.

(6) Suppose that k > 1. Then, for those ui’s that are β-critical and
κ-critical respectively, the corresponding words amongst w2, . . . , wkg

and u′2, . . . , u
′

k are maximal 2-generator subwords and κ-maximal sub-
words respectively, within wg and αu′1 · · · u

′

k.

(7) If αu′1 · · · u
′

k admits a further left lex reducing or right length reducing
sequence, then all of the factors of that sequence, as well as its tail
when length reducing, are contained within αu′1.

This lemma is a modification of [8, Lemma 3.7], and the proof of much of
that lemma transfers.

Proof: The proofs of (1), (2) and (3) need no adjustment.

For (4) the proof needs adjustment only when one of ul and ul−1 is κ-
critical. Suppose first that ul−1 is β-critical and ul is κ-critical. Since
h := l[τ(ul−1)] = f[ul], h must commute with every letter in wl = u′l. Now,
by the definition of a κ-critical word, {h, h−1}∩u′l = ∅. h 6∈ u′l and h−1 6∈ u′l.
If x is the other generator of ul−1, then xh 6= hx, and so we also have
{x, x−1} ∩ u′l = ∅.
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Suppose next that ul−1 is κ-critical and ul is β-critical. Since h := f[ul] =
l[τ(ul−1)] commutes with every letter in u′l−1 and {h, f[u′l]} is a braid pair,
our hypothesis ensures that f[u′l] is in a free pair with every letter of u′l−1.

This completes the adjustment of the proof of (4). The proof of (5) is
adjusted in a very similar way.

The proof of (6) needs no adjustment for the β-critical words. For the κ-
maximality of the words corresponding to κ-critical words, we observe that,
since the neighbouring moves in the sequence are β-moves that involve braid
pairs of generators, any longer subwords would violate the definition of κ-
maximality.

For (7) we may assume that k > 1, or there is nothing to prove. As in [8] we
see that none of u′2, . . . , u

′

k can contain β-critical subwords. And a β-critical
word cannot be contained within u′lu

′

l+1, either when both ul and ul+1 are β-
critical (by (6)), or when one is β-critical and the other κ-critical (by (4) and
(5)). Suppose that v is a κ-critical subword of αu′1u

′
2 · · · u

′

k. Suppose that
v intersects both u′l and u′l+1 non-trivially. If both are braid (2-generator)
subwords, then the intersections must be powers of single generators which,
according to our main hypotheses, cannot commute, and so v ⊆ u′lu

′

l+1

cannot be κ-critical. If one of u′l and u′l+1 is a braid subword, then that
intersection is a power of a single generator, which (4) and (5) guarantee
to be free with the rest of v, and again v cannot be κ-critical. So v cannot
intersect a braid subword, and must be a subword of some u′l; if l > 1 the
adjacent subwords must be braid subwords, and so the sequence has length
1. Since w ∈ W , this case cannot occur.

So the first term of any further reducing sequence must be disjoint from the
suffix u′2 · · · u

′

k of the reduction of wg. If that sequence is leftward then this
implies that the whole sequence is to the left of the suffix u′2 · · · u

′

k. If it is
rightward length reducing then Lemma 2.5 tells us that its rightmost factor
must contain a critical subword. That can only intersect the suffix u′2 · · · u

′

k

if it is κ-critical, and in that case it is within some u′l. Within u′l−1 there is a
2-generator subword on a braid pair of generators neither of which is in u′l,
and so neither of which can freely cancel with a letter of u′l after a κ-move
has been applied. Hence (7) is proved. �

Lemma 2.7 For w ∈ W , suppose that wg admits a leftward lex reducing
sequence, with corresponding factorisation αwk · · ·w1 of wg and notation as
above, and that w admits no leftward lex reducing sequence. Then for each
l with 1 ≤ l ≤ k:

(1) If ul is β-critical then no proper prefix of ul is critical; hence ul has
one of the forms: p(x, y)ξ(z

−1, t−1)n with n > 0, or n(x
−1, y−1)ξ(z, t)p
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with p > 0, where {x, y} = {z, t} = {ail , ajl}.

(2) If l < k and ul is β-critical then u′l involves both of the generators
ail and ajl.

(3) If l < k and ul is β-critical than p(u′l) + n(u′l) < m.

(4) Suppose that l < k. If ul+1 is β-critical, then f[u′l] 6∈ {a±1
il+1

, a±1
jl+1

},

and if further ul is κ-critical, then u′l ∩ {a±1
il+1

, a±1
jl+1

} = ∅. If ul+1 is

κ-critical but ul is β-critical, then {f[u′l], x} is free for all x ∈ u′l+1.

(5) Suppose that 1 < l < k. If ul−1 is β-critical, then l[u′l] 6∈ {a±1
il−1

, a±1
jl−1

},

and if further ul is κ-critical, then u′l ∩ {a±1
il−1

, a±1
jl−1

} = ∅. If ul−1 is

κ-critical, then {l[u′l], x} is free for all x ∈ u′l−1.

Further l[u′1] 6= g±1, and if u1 is κ-critical, then {g±1} ∩ u′1 = ∅.

(6) Suppose that k > 1. Then, for those ui’s that are β-critical and κ-
critical respectively, the corresponding words amongst w1, . . . , wk−1

and u′1, . . . u
′

k−1 are maximal 2-generator subwords and κ-maximal
subwords respectively, within wg and ατ(uk) · · · u

′
1.

(7) If ατ(uk) · · · u
′
1 admits a further left lex reducing or right length re-

ducing sequence, then all of the factors of that sequence, as well as
its tail when length reducing, are contained within ατ(uk).

The proof of this is very similar to the previous proof, so we shall omit it,
as we omitted the proof of the corresponding [8, Lemma 3.8].

Lemma 2.8 Suppose that w admits a rightward critical sequence with cor-
responding factorisation αw1 · · ·wk, and whose application to w transforms
it to a word ending in g. Let ζ be a non 2-geodesic 2-generator word over
generators that form a braid pair, where f[ζ] = g and suf[ζ] is 2-geodesic.
Suppose that wsuf[ζ] is freely reduced. Then the given sequence for w extends
to a rightward length reducing sequence for wsuf[ζ] of length k + 1.

Proof: This is identical to the proof of [8, Lemma 3.9]. �

We are now ready to prove Proposition 2.2. The argument has the same
structure as the proof of [8, Proposition 3.3] but using the modified lemmas.
We shall outline the whole argument but only give detail where the argument
needs modification. Where we comment that the argument follows that
of the proof of [8, Proposition 3.3] without adjustment, we intend it to
be understood that any applications of [8, Lemmas 3.6 to 3.9] have been
replaced by applications of Lemmas 2.5 to 2.8 of this article.

Proof of Proposition 2.2: Since w ∈ W and wg 6∈ W , it follows from
the definition of W that one of the following two possibilities occurs:
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Case 1 wg admits a rightward length reducing sequence enabling the free
cancellation of the final g.

Case 2 wg admits a leftward lex reducing sequence but no rightward length
reducing sequence.

In each of the two cases we need to eliminate the possibilities that either
(a) the reduction of wg admits a rightward length reducing sequence, or (b)
the reduction of wg admits a leftward lex reducing sequence. We use the
notation for rightward and leftward reducing sequences that was established
above.

In Case 1, we choose an optimal rightward length reducing sequence of
wg, with corresponding factorisation αw1 · · ·wkg; we call the word resulting
from this reduction ρ1(wg). In Case 2, we choose an optimal leftward lex
reducing sequence of wg, with corresponding factorisation αwk · · ·w1; we
call the word resulting from this reduction ρ2(wg).

We shall see that in Case (1), if ρ1(wg) admits either a rightward or leftward
reducing sequence, then the same is true of w, while in Case (2), if ρ2(wg)
admits a rightward reducing sequence, then so does wg (and so in fact we are
in Case (1)), and if ρ2(wg) admits a leftward reducing sequence then either
the same is true of w or wg admits a leftward reducing sequence whose
left hand end is further left than in the previously chosen sequence for wg,
contradicting its optimality. The details of this argument now follow.

Case 1(a):

Suppose that we are in Case 1 and that ρ1(wg) admits a rightward length
reducing sequence with associated factorisation βw̄1 · · · w̄k̄hγ, where h is the
tail, which cancels after application of the τ -moves to ρ1(wg).

Since w is in W and hence cannot admit a rightward length reducing se-
quence, the subword w̄1 · · · w̄k̄h of ρ1(wg) cannot be a subword of w. Hence it
has some intersection with the suffix u′1 · · · u

′

k of ρ1(wg). However, Lemma 2.6
(7) tells us that it is contained within αu′1. So the subword w̄k̄h has some
intersection with u′1, but by Lemma 2.6 (6) any other factors of this sequence
are to the left of u′1 in ρ1(wg). If k̄ > 1, w̄k̄ starts no later than f[u′1], but if
k̄ = 1, w̄1 may start within u′1.

We eliminate first the case k̄ = 1. First suppose that w1 → τ(w1) is a
β-move. If the intersection of w̄1h and τ(u1) is a 2-generator word, then the
argument is as in [8]. If the intersection is hr, with r ≥ 1 (this is a case that
was accidentally omitted from the proof of [8, Lemma 3.8]), then we can
write w̄1 = w̄′

1h
r−1 and apply (essentially) [8, Lemma 2.8] to see that w̄′

1h

admits a rightward length reducing move, and hence so does the subword
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w̄′
1w1 of w, contradicting w ∈ W .

So now suppose that u1 → τ(u1) is a κ-move, au′1 → u′1a. Since w̄1h and u′1
intersect, certainly h ∈ u′1, and hence ha = ah. First suppose that h = f[u′1].
Then w̄1au

′
1 is a subword of w, and can be reduced through the application

of a τ -move to the maximal prefix of w̄1 not ending with an h (again we can
use essentially [8, Lemma 2.8] to see that such a move exists), followed by
h−1a → ah−1, and then by free-cancellation; this contradicts w ∈ W .

Otherwise h 6= f[u′1] and, since the intersection of w̄1 with u′1 involves at
least 2 generators of u′1, w̄1 cannot be β-critical. So w̄1 → τ(w̄1) is a κ-
move, which involves commuting h−1 past the letters of u′1 that precede the
first occurrence of h. Since (as we observed earlier) ha = ah, we can apply
essentially the same move to commute an h−1 (that must be in α) to the
right within αau′1 = αw1, and then freely cancel that h−1 with the first h

in u′1; again this contradicts w ∈ W .

This completes the case k̄ = 1. The case k̄ > 1 proceeds as in the proof
of [8, Proposition 3.3], with a modification just as above in the case where
u′1 → τ(u′1) is a κ-move.

Case 1(b):

Next suppose that we are in Case 1 and that ρ1(wg) admits a leftward
lex reducing sequence with associated factorisation βw̄k̄ · · · w̄1γ. Applying
Lemma 2.6 (7) we see that w̄1 is contained within αu′1 in ρ1(wg). Since
w ∈ W , w̄1 cannot be contained within α, but must end within u′1.

First suppose that u1 → τ(u1) is a β-move. If the intersection of w̄1 and u′1
is a 2-generator word, then the argument is as in [8, Proposition 3.3]. If the
intersection is a power of a single generator h (again, this is a case that was
accidentally omitted from the proof in [8]), then w̄′

1w1 is a subword of w
admitting a leftward lex reducing reduction, where w̄′

1 is the maximal prefix
of w̄1 that ends with a single h.

So suppose that u1 → τ(u1) is a κ-move, au′1 → u′1a. If the intersection
of w̄1 with u′1 is a power of a single generator h, then, where w̄′

1 is the
maximal prefix of w̄1 that does not end with h, w̄′

1au
′
1 is a subword of w,

and application of the move ah → ha followed by the leftward lex reducing
sequence of ρ1(wg) reduces w lexicographically, contradicting w ∈ W .

Otherwise, just as in Case 1(a) we see that w̄1 → τ(w̄1) is a κ-move, which
involves commuting a letter h ∈ u′1 past the letters of u′1 that precede the
first occurrence of h. Hence ha = ah. We could have applied the same
move to commute h to the left within αau′1 = αw1 causing a lexicographic
reduction within w; again this contradicts w ∈ W .
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Case 2(a):

The possibility that we are in Case 2, and that ρ2(wg) admits a rightward
length reducing sequence, is excluded by the following result, which corre-
sponds to [8, Lemma 3.10], and which we state as a separate lemma since
we shall also use it in the proof of Proposition 2.3.

Lemma 2.9 Suppose that w ∈ W , and that wg admits an optimal leftward
lex reducing sequence with associated factorisation wg = αwk · · ·w1, leading
to

ρ2(wg) = ατ(uk)u
′

k−1 · · · u
′

3u
′

2u
′

1.

Then ρ2(wg) admits a rightward length reducing sequence if and only if wg
admits a rightward length reducing sequence.

We apply the lemma (whose proof we defer until the end of the proof of
this proposition) to deduce that in this case wg must also admit a rightward
length reducing sequence, a possibility that we have excluded from Case 2.

Case 2(b):

So now suppose that we are in Case 2 and that ρ2(wg) admits a leftward lex
reducing sequence with associated factorisation βw̄k̄ · · · w̄1γ. Lemma 2.7 (7)
tells us that the subword w̄1 is a subword of ατ(uk) within ρ2(wg). Since
w ∈ W , w̄1 cannot be a subword of α and so w̄1 must end within τ(uk).

First suppose that uk → τ(uk) is a β-move. If the intersection of w̄1 and u′k
is a 2-generator word, then the argument is as in [8, Proposition 3.3]. If the
intersection is a power of a single generator h (this is the accidentally omitted
case again), then, where w̄′

1 is again the maximal prefix of w̄1 ending in a
single h, w̄′

1u
′

k admits a leftward lex reducing reduction, and so the original
reduction sequence can be extended further left, contradicting its optimality.

So now suppose that uk → τ(uk) is a κ-move, wka → awk. If the intersection
of awk with w̄1 is just a, then we can extend the original reduction sequence
by the move ū1 → τ(ū1), contradicting its minimality. Otherwise, ū1 →
τ(ū1) must be a κ-move, commuting l[w̄1] one or more places to the left
past a word containing a. If we delete that letter a from the prefix of ρ2(w)
that ends at the right hand end of w̄1 then we derive a prefix of w to which
(essentially) the same κ-move can be applied. If the original κ-move was
on a word of length 2, then the new κ-move has no effect. But whether or
not this is the case, the application of this move followed by the subsequent
moves in the reduction sequence for ρ2(w) (all of which occur to the left of
u′k) yields a leftward lex reducing sequence for w, contradicting w ∈ W . �
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To complete the proof of Proposition 2.2. we need the proof of Lemma 2.9,
which corresponds to [8, Lemma 3.10]. Here too, whenever we comment
that the argument follows that of the proof of [8, Lemma 3.10] without ad-
justment, we intend it to be understood that any applications of [8, Lemmas
3.6 to 3.9] have been replaced by applications of Lemmas 2.5, 2.6, 2.7 and
2.8.

Proof of Lemma 2.9: We prove first (a) that if ρ2(wg) admits a rightward
length reducing sequence then wg admits one too, and then (b) that if wg
admits a rightward length reducing sequence, then so does ρ2(wg).

Proof of (a):

Suppose that ρ2(wg) has a rightward length reducing sequence with associ-
ated factorisation βw̄1 · · · w̄k̄hγ, where the generator h cancels after appli-
cation of the τ -moves to w̄ := w̄1 · · · w̄k̄. Then by Lemma 2.7 (7) w̄k̄h is a
subword of ατ(uk). If it were also a subword of α, we would have a rightward
length reducing sequence for w, contradicting w ∈ W . Hence w̄k̄h must end
within τ(uk). But by Lemma 2.7 (6) any other factors of this sequence must
be within α.

The proof is now by induction on k. We deal first with the base case k = 1.

We eliminate first the case k̄ = 1. First suppose that w1 → τ(w1) is a
β-move. If the intersection of w̄1h and τ(w1) is a 2-generator word, then
the argument is as in [8]. If the intersection is hr, with r ≥ 1 (this is a case
that was accidentally omitted from the proof of [8, Lemma 3.8]), then we
can write w̄1 = w̄′

1h
r−1 and apply (essentially) [8, Lemma 2.8] to see that

w̄′
1h admits a rightward length reducing move, and hence so does w̄′

1τ(w1).
So l[τ(w̄′

1)] = h−1, and h−1τ(w1) is not freely reduced. So h−1τ(w1) is not
geodesic, and hence neither is h−1w1, and that word admits a rightward
length reducing move. Then the subword w̄′

1w1 of wg, and hence also wg

itself, admits a rightward length reducing sequence of length 2.

So now suppose that w1 → τ(w1) is a κ-move, w1 = pre[w1]g → gpre[w1].
The letter h that freely cancels with l[τ(w̄1)] must be a letter of τ(w1) =
gpre[w1].

If h = g then w̄1w1 admits the rightward length reducing sequence:

w̄1w1 → τ(w̄1)w1 = pre[τ(w̄1)]h
−1pre[w1]g →

pre[τ(w̄1)]pre[w1]h
−1g → pre[τ(w̄1)]pre[w1]

(which has length 2 if w̄1 → τ(w̄1) is a β-move, but collapses to a sequence
of length 1 if it is a κ-move), and hence wg also admits such a sequence.
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Otherwise, h ∈ τ(w1). Then, since w ∈ W , w̄1h cannot be a subword of
pre[w1], so it must contain g, and hence g ∈ w̄1. Then, since g and h form
a commuting pair of generators, both involved in w̄1, the move w̄1 → τ(w̄1)
must be a (rightward) κ-move; specifically it commutes h−1 = f[w̄1] to the
right past suf[w̄1]. But the word obtained by removing the letter g from w̄1

is a subword of wg, and also admits a rightward length reducing κ-move.
Hence so does wg.

This completes the case k̄ = 1. The case k̄ > 1 proceeds as in the proof of
[8, Lemma 3.10], with a modification as above in the case where u′1 → τ(u′1)
is a κ-move.

We now proceed to the inductive step, k > 1. We can use the corresponding
part of the proof of [8, Lemma 3.10] almost without modification. The
induction hypothesis ensures that we can apply a rightward sequence of τ -
moves to αwk · · ·w2 and derive a word ending in g′−1, where g′ := f[τ(w1)] =
f[τ(u1)]. Then it is shown that the word g′−1w1 is non-geodesic.

When w1 → τ(w1) is a β-move, the argument of [8] shows without modifi-
cation (except that we use Lemma 2.8 (a) rather than [8, Lemma 3.9]) that
a β-move on a prefix of g′−1w1 can be applied after the rightward sequence
of τ -moves applied to αwk · · ·w2 (which results in a word ending in g′−1);
the extended sequence is now a rightward length reducing sequence for wg.

Otherwise w1 → τ(w1) is the (leftward) κ-move pre[w1]g → gpre[w1], and
so g′ = g. So we can combine a rightward sequence of τ -moves applied
to αwk · · ·w2 with the rightward κ-move g−1pre[w1] → pre[w1]g

−1 followed
by the cancellation of the final g to construct a rightward length reducing
sequence for wg.

Proof of (b):

Now suppose that wg admits a rightward length reducing sequence. Since
w ∈ W , the tail of the associated factorisation of wg must be the final g,
Again we use induction on k.

Suppose first that k = 1. As in [8], if w1 → τ(w1) is a β-move, then the
argument is very similar to the k = 1 case in the proof of (a): we just
interchange the roles of u1 = w1 and τ(u1).

When w1 → τ(w1) is a leftward κ-move pre[w1]g → gpre[w1], the final move
in the rightward length reducing sequence of wg must be a rightward κ-move
that commutes g−1 past a word having pre[w1] as a suffix. It is then clear
that the prefix αwk · · ·w2g of ρ2(wg) admits a rightward length reducing
sequence of length either equal to or one less than that of wg, and hence so
does ρ2(wg).
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Now suppose that k > 1. Then, by Lemma 2.7 (6), those subwordsw1,. . .wk−1

for which the corresponding ui are β-critical are maximal 2-generator words
and 2-geodesic, whereas those that are κ-critical are κ-maximal.

Suppose that wg admits a rightward length reducing sequence βw̄1w̄2 · · · w̄khγ

of length k̄. This cannot apply to w, since w ∈ W , so γ is the empty word
and h = g. We observe that the k̄-th move in the rightward sequence for wg
and the first move in the leftward sequence for wg are either both κ-moves
or both β-moves, depending on whether or not l[w] commutes with g.

Suppose that k̄ = 1. Then w̄1 is a suffix of w. Now the fact that w1 must
be either a maximal 2-generator subword of wg or κ-maximal ensures that
w̄1g is a suffix of w1. But in that case w1 admits a length reduction. That
cannot happen if w1 → τ(w1) is a β-move, when we observed above that
w1 must be 2-geodesic, nor can it happen if w1 → τ(w1) is a κ-move since
that would contradicts the condition in the definition of a (leftward) κ-move
ua → au that stipulates that neither a nor a−1 occurs in u.

So k̄ > 1. Using the fact that w1 is either maximal as a 2-generator subword
or κ-maximal, we deduce that the (k̄− 1)-th τ -move must change l[w2] to a
letter h, say, which then becomes the first letter of ūk̄. When the k̄-th move
is a β-move, the argument of [8, Lemma 3.10] shows that g′ := f[τ(w1)] =
h−1. If the k̄-th move is a κ-move, then since f[τ(w1)] = l[w1] = g and
f[ūk̄] = l[τ(ūk̄] = g−1 we have g′ = h−1 in this case too.

So the first k̄−1 moves of the rightward length reducing sequence of wg also
induce a rightward length reducing sequence of w′ := αwk · · ·w2g

′. But w′

admits a leftward lex reducing sequence of length k− 1, and so we can now
apply our inductive hypothesis to conclude that ρ2(w

′) admits a rightward
length reducing sequence. The result immediately follows since

ρ2(w
′) = ρ2(αwk · · ·w2g

′) = ατ(uk)u
′

k−1 · · · u
′

3u
′

2

is a prefix of ρ2(wg). �

Proof of Proposition 2.3: This is immediate except when wg is freely
reduced but wg 6∈ W , in which case ρ(wg) is defined as in the proof of
Proposition 2.2, and we use the same notation as in that proof.

First suppose that ρ(wg) = ρ1(wg). Then wg admits a factorisation αw1 . . . wkg,
corresponding to a rightward length reducing sequence. The sequence of
τ -moves transforms w to w′ := αu′1u

′
2 · · · u

′

k−1τ(uk), using our standard no-
tation associated with a rightward factorisation of wg, with l[τ(uk)] = g−1.
Then the final g−1 is cancelled to produce ρ(wg) = αu′1u

′
2u

′
3 · · · u

′

k. So
ρ(wg)g−1 = w′. Hence to complete consideration of this case, we need to
show that ρ(w′) = w.
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It follows from Lemma 2.6 (4) and (5) that reversing the τ -moves in the
rightward length reducing sequence for wg results in a leftward lex reducing
sequence S that transforms w′ back to w. We need to show that S is optimal.

So let S ′ be the optimal leftward lex reducing sequence for w′; that is,
the leftward lex reducing sequence for w′ that extends furthest to the left
in w′. Then S ′ involves at least k τ -moves, and the first k − 1 of those
must match the first k − 1 τ -moves of S, since those must correspond to
τ(uk), u

′

k−1, . . . , u
′
2, defined as subwords of w′ that are either maximal 2-

generator or κ-maximal (as in Lemma 2.7 (6)). These first k − 1 moves
transform w′ back to ατ(u1)w2 · · ·wk.

The k-th move of S ′ must be of the same type as the move u1 → τ(u1) since
each of these two moves is a β-move precisely when τ(u1) contains a braid
pair of generators.

Suppose first that u1 → τ(u1) is a β-move. Now if S ′ extends further left
than S, then either the k-th move of S′ extends further left than that of S, or
else τ(u1) → u1 is the k-th move of both S and S ′, but it is followed by other
moves in S ′. In the first case, the argument in the proof of [8, Proposition
3.4] shows that ατ(u1) contains a critical subword γτ(u1), that starts within
α and ends at the end of τ(u1); some prefix γγ′ of γu1 is also critical, and is a
subword of w, and then the β-move γγ′ → τ(γγ′) followed by any remaining
moves in S ′ gives a leftward reducing sequence for w, contradicting the fact
that w ∈ W . In the second case the sequence of remaining moves in S ′ also
gives a leftward reducing sequence for w, contradicting the fact that w ∈ W .

So suppose that u1 → τ(u1) is a κ-move, au′1 → u′1a, where a = f[u1].
Then, as we observed above, the k-th move of S ′ must also be a κ-move.
As before, either this κ-move must extends further left than f[u′1] (in which
case it moves the a further left than its original position in w, immediately
to the left of f[u′1]), or it must be followed by further moves in S ′. In the
first case we could have applied a leftward κ-move to move a = f[w1] to the
left within w, and in the second case we could applied the additional moves
in S ′ within w; in either case this contradicts w ∈ W .

Now we can apply Lemma 2.9 to see that if w′ can also be reduced using a
rightward length reducing sequence, then w = ρ2(w

′) must also admit such a
sequence. But this contradicts w ∈ W . Hence w′ admits no such reduction,
and so we must have ρ(w′) = ρ2(w

′) = w as required.

Now suppose that ρ(wg) = ρ2(wg). Then we have a factorisation wg =
αwk · · ·w1 corresponding to a leftward lex reducing sequence for wg to

ρ(wg) = ατ(uk)u
′

k−1 · · · u
′

2u
′

1.
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Reversing these τ -moves results in a rightward length reducing sequence
S for ρ(wg)g−1, and we need to verify that there is no rightward length
reducing sequence S ′ for ρ(wg)g−1 that starts further to the right than S.
By Lemma 2.7 (7), such a sequence would start to the left of u′k−1, and so
the factorisation would have the form αβu′′ku

′

k−1 · · · u
′
2u

′
1 with βu′′k = τ(uk)

and β nonempty, the first move being a τ -move on u′′k. As in [8] we can
exclude the possibility that uk is β-critical. Hence we now assume that
uk = ua and τ(uk) = au, for some u not containing a or a−1, all of whose
letters commute with a, and so u′′k is a suffix of u, and the τ -move on u′′k is
a commuting move. Since the result of the τ -move on u′′k must be a word
ending in a, we have a ∈ u′′k, and hence also a ∈ u; this gives a contradiction.
�

Proof of Proposition 2.4: To ease the notation, let a = ai, b = aj , and
m = mij. We divide our argument into the two cases m > 2 and m = 2.

Suppose first that m > 2; in other words {a, b} is a braid pair. We suppose,
as we did in the proof of [8, Proposition 3.5], that a <lex b. The proof is
straightforward if w is empty or if w is a power of a letter whose name is
not a or b.

Suppose that the name of l[w] is c, with c 6∈ {a, b}. It is transparent that
ρ(wm(a, b)) = ρ(wm(b, a)) = wm(a, b), except when w has a suffix v that
is either a 2-generator word involving a braid pair {a, c} or {b, c}, or such
that either va or vb is right κ-critical. Note that va and vb cannot both
be κ-critical, since {a, b} is a braid pair. We shall assume that in the braid
pair case, that pair is {a, c} rather than {b, c}, a rather than b, and that in
κ-critical case it is va that is κ-critical, in which case {b, c} is a free pair; the
argument in which the roles of a and b are reversed is essentially identical
(we need to exercise care, since we have assumed that a < b).

In the case of a braid pair, we can use the argument in the proof of [8,
Proposition 3.5] to conclude that ρ(wm(a, b)) = ρ(wa)m−1(b, a), and also
that ρ(wm−1(b, a)) = wm−1(b, a). In the κ-critical case, the same conclu-
sions follow from the observation that the name of the final letter of ρ(wa)
is l[w] = c, together with the fact that {b, c} is free. In either case, the argu-
ment of [8] goes through without modification to deduce from the equation
ρ(wm−1(b, a)) = wm−1(b, a) that ρ(wm(b, a)) = ρ(wa)m−1(b, a). Combin-
ing the two expressions for ρ(wa)m−1(b, a), we conclude that ρ(wm(a, b)) =
ρ(wm(b, a)).

Now we suppose that the name of l[w] is a or b. In that case, since {a, b}
is a braid pair (by assumption), the argument of [8] goes through without
modification to prove that ρ(wm(a, b)) = ρ(wm(b, a)).
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It remains to consider the case m = 2; that is, when {a, b} is a commuting
pair. We need to prove that ρ(wab) = ρ(wba). We use the following result.

Lemma 2.10 Suppose that {a, b} is a commuting pair.

(1) If wa ∈ W , wb ∈ W , then ρ(wab) = ρ(wba) and wab ∈ W or
wba ∈ W , depending on whether a <lex b or b <lex a.

(2) If wa ∈ W and wb 6∈ W , then ρ(wab) = ρ(wb)a = ρ(wba).

Proof of Lemma 2.10: Suppose that wa,wb ∈ W , and a <lex b. Then
wab cannot have a rightward length reducing factorisation, αw1 · · ·wkb, since
αw1 · · · pre[wk]b would then be a rightward length reducing sequence for wb
(even if pre[wk] were the empty word). And wab cannot have a leftward
lex reducing factorisation, αwk · · ·w1, since in that case, where w1 = v1ab,
αwk · · · v1b would be a leftward lex reducing sequence for wb (even if v1 were
the empty word). So wab ∈ W , and (i) is proved.

Now suppose that wa ∈ W , wb 6∈ W . Then it is not hard to see that
wab 6∈ W . We know from Proposition 2.2 that a single reduction is suffi-
cient to reduce wab to ρ(wab). If this is rightward, and αw1 · · ·wkb is the
associated factorisation, then αw1 · · · pre[wk]b is a rightward length reducing
factorisation for wb. If the single reduction is leftward, and αwk · · ·w1 is the
associated factorisation, then w1 = v1ab for some v1, and αwk · · · v1b is a
leftward lex reducing factorisation for wb. In either case, if the factorisation
for wb were not optimal, neither would be the associated factorisation for
wab, and hence in both cases we can deduce that ρ(wb)a = ρ(wab). Finally,
by definition ρ(wba) = ρ(ρ(wb)a), so ρ(wba) = ρ(ρ(wab)) = ρ(wab). �

The lemma yields the result we need except when w ∈ W but wa,wb 6∈ W .
So suppose that this is the case. We consider the various possibilities for
l[w]. It follows from [8, Lemma 2.8] that we cannot have l[w] = a when
w ∈ W but wa 6∈ W , and similarly we cannot have l[w] = b. Hence l[w] is
equal to a−1, b−1, or c, with c 6∈ {a±1, b±1}.

When l[w] = a−1, we have ρ(wa) = pre[w], and ρ(wab) = ρ(pre[w]b). Now
ρ(wb) = ρ(pre[w]a−1b). If pre[w]b ∈ W , then Lemma 2.10 (i), together with
the fact that wb 6∈ W , applies to give ρ(wb) = ρ(pre[w]ba−1) = pre[w]ba−1.
On the other hand, if pre[w]b 6∈ W , then Lemma 2.10 (ii) gives ρ(wb) =
ρ(pre[w]a−1b) = ρ(pre[w]b)a−1, so ρ(wba) = ρ(pre[w]b) = ρ(wab). The case
l[w] = b−1 is similar.

Finally, suppose that l[w] = c, where c 6∈ {a±1, b±1}. Now {c, a} cannot
be a free pair, since wa 6∈ W . Similarly for {c, b}. And neither {c, a} nor
{c, b} can be a braid pair (or the other pair would be free), hence both are
commuting pairs. Both wa and wb reduce, but if both reduced with reducing
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sequences of length greater than 1, then some letter d of w, which is in the
second to rightmost subword in the associated factorisations of both wa and
wb, would be in a braid pair with both a and b, contrary to our hypothesis.
Hence we may assume that a single τ -move reduces wb in shortlex. If wa is
also reduced by a single τ -move, then the two such moves are κ-moves, with
a, b commuting past suffices ua, ub of w; in that case we assume that ub is
no longer than ua.

If wb is non-geodesic, then w = αb−1ub, where ub does not involve b, and
ρ(wb) = αub, while if wb can be reduced lexicographically, then w = αub
and ρ(wb) = αbub, with bub < ubb. The rightmost τ -move in the reducing
sequence for wa is a κ-move that commutes a or a−1 past a suffix of w

which must contain ub (by assumption when the sequence has length 1, and
otherwise using part (6b) of either Lemma 2.6 or Lemma 2.7). So ρ(wa)
has ub as a suffix, and ρ(wa)b can be reduced using the same κ-move that
reduces wb. Similarly, ρ(wb)a can be reduced using essentially the same
sequence of moves that can be applied to wa. The result of both these two
sequences of reductions is the same word v, and is a reduction of both wab

and wba. A single reducing sequence of τ -moves derives v from ρ(wb)a. It
must be optimal as a reducing sequence for ρ(wb)a, since it corresponds to
an optimal reducing sequence for wa. Hence v = ρ(ρ(wb)a) = ρ(wba) ∈ W ,
and ρ(wab) = v = ρ(wba). �

3 Proving FFTP

This section is devoted to the proof of the following theorem.

Theorem 3.1 Let G be a sufficiently large Artin group, defined over its
standard generating set. Then G satisfies FFTP, and hence its set of geodesic
words is regular.

It is proved in [10] that regularity of the set of geodesics follows from FFTP.
We recall that the set of all geodesics over A satisfies FFTP if, for some k,
any non-geodesic word over A asynchronously k-fellow travels with a shorter
representative of the same element. Hence the property is easily deduced
from the following result, which is an analogue of [5, Proposition 7.5] under
our extended hypotheses; its proof appears at the end of this section.

Proposition 3.2 Suppose that G is an Artin group, defined over its stan-
dard generating set, and satisfying the hypotheses of Theorem 3.1.

(1) Let v,w be two geodesic words representing the same group element
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f , with l[v] 6= l[w]. Then a single rightward critical sequence can be
applied to v to yield a word ending in l[w].

(2) Let v be a freely reduced non-geodesic word with v = wa, a ∈ A and
w geodesic. Then v admits a rightward length reducing sequence.

The proof of FFTP for large type groups in [8] followed a slightly different
route. We are able to produce a more direct proof here, by using (with some
adaptation) a combination of results from [5] as well as [8]. For the remainder
of this section we assume that G satisfies the hypotheses of Theorem 3.1.
First we prove the analogue of [8, Lemma 4.2]:

Lemma 3.3 If w ∈ W , x ∈ X and wx and wx−1 are both freely reduced,
then wx and wx−1 cannot both be non-geodesic.

Proof: We use induction on |w|. If wx and wx−1 are both non-geodesic
then they admit rightward length reducing sequences. If l[w] and x form a
braid pair, then the last move in both sequences is a β-move and the proof
is as for [8, Lemma 4.2]. Otherwise l[w] and x must be a commuting pair,
and the last move in both sequences is a κ-move.

Suppose that wx is reduced by a single κ-move x−1ux → u. Then the
suffix x−1u of w contains one x−1 and no x, and every one of its generators
commutes with x. On the other hand, the last move in the sequence that
reduces wx−1 must be a κ-nove xvx−1 → v, for a suffix v of w that contains
no x or x−1, and which is preceded in w either by x or by a generator that
forms a braid-pair with x. But it is not possible for w to have both x−1u

and v as suffices.

So both reducing sequences have length greater than 1, and have final moves
x−1ux → u and xux−1 → u, where u is the maximal suffix of w all of whose
letters commute with x. Let w = vu. Then vx and vx−1 are both non-
geodesic and the inductive hypothesis gives a contradiction. �

We recall from [8, Lemma 4.2] the notation for the process of reduction of a
geodesic word v to its shortlex minimal representative ρ(v). This is done in
at most n := |v| steps, through a sequence of words v(0) = v, v(1), · · · , v(n) =
ρ(v); for each i from 1 to n, v(i) is either equal to v(i−1) or is derived from
it by replacing its prefix of length i by its lex reduction. When v(i) 6=
v(i−1), Proposition 2.2 says that the reduction is through a single leftward
lex reducing sequence of which the first τ -move is applied to a word ending
at the i-th letter of v(i−1), which is the same as the i-th letter of v.

We shall also need the following new lemma.
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Lemma 3.4 Let x, y ∈ X be a free pair of generators, and let f ∈ G.

(1) If some geodesic word representing f contains x±1 but neither y nor
y−1 after the final x±1, then the same is true of every geodesic word
representing f .

(2) f cannot have distinct geodesic representatives, one of which ends in
x±1 and the other in y±1.

Proof: Any two geodesic representatives of f are connected by a sequence
of τ -moves, all of which preserve the property described in (1). Part (2)
follows immediately from part (1). �

We need an analogue of [8, Proposition 4.5]:

Proposition 3.5 Suppose that v,w are any two geodesic words representing
the same element f ∈ G, and that l[v] 6= l[w]. Then:

(1) l[v] and l[w] have different names;

(2) If {l[v], l[w]} is a braid pair then the maximal 2-generator suffices of
v and w involve generators with the same names as l[v] and l[w];

(3) If {l[v], l[w]} is a braid pair then any geodesic word representing f

must end in l[v] or in l[w].

(4) If {l[v], l[w]} is not a braid pair, then it is a commuting pair, and
some geodesic representative of f ends in l[v]l[w].

Proof: Since ρ(v) = ρ(w), either l[ρ(v)] 6= l[v] or l[ρ(v)] 6= l[w]. We assume
without loss of generality that l[ρ(v)] 6= l[v]. This implies in particular that
v(n−1) 6= v(n).

The proof of (1) is essentially the same as in [8, Proposition 4.5], but using
Lemma 3.3. We prove the remaining parts by induction on |v|. Let l[ρ(v)] =
c. Assume first that {l[v], l[w]} is a braid pair. Since the two generator case
is straightforward, we assume that v involves at least three generators.

Suppose that the first τ -move of the final reduction v(n−1) → v(n) is a
κ-move. Then {l[v], c} is a commuting pair, and so l[w] 6= c. Then, by
hypothesis, {l[w], c} is a free pair, and Lemma 3.4 (2) applied to ρ(v) and
w, with {x, y} = {l[w], c}, gives a contradiction. So the first τ -move is a
β-move, and {l[v], c} is a braid pair.

We cannot have l[pre[v(n−1)]] = l[v] since otherwise we could use [8, Lemma
2.8] as before to deduce v(n−1) ∈ W , which is false. So l[pre[v(n−1)]] = c±1,
while l[v(n−1)] = l[v].
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Note that the maximal 2-generator suffix of ρ(v) involves generators with
names those of c and l[v]. We claim that the same is true for v. It is true for
v(n−1) and, since v(n−1) has a critical suffix, it is also true for pre[v(n−1)]. And
pre[v(n−1)] is a geodesic representative of pre[v] that ends in c±1. Let d :=
l[pre[v]]. If c = d±1 then our claim above is confirmed, so assume otherwise.
Now Lemma 3.4 (2) applied to pre[v] and pre[v(n−1)] implies that {c, d} is
not a free pair. If {c, d} is a commuting pair then, by hypothesis, {l[v], d}
is a free pair and now Lemma 3.4 (1) gives a contradiction when applied
to pre[v] and pre[v(n−1)]. So {c, d} is a braid pair, and the claim follows
by applying (2) inductively to the representatives pre[v] and pre[v(n−1)] of
f l[v]−1.

To complete the proof of (2), it remains to show that the maximal 2-
generator suffix of w also involves the generators with the same names as
l[v] and c. If l[w] and c = l[ρ(w)] have different names, then the argument
of the previous paragraph applies to w and ρ(w) to show that the maxi-
mal 2-generator suffix of ρ(w) (= ρ(v)) involves generators with the names
of c and l[w], contrary to the first sentence of the previous paragraph. So
l[w] = c. Let v′ be the result of applying the first τ -move in the reduction
of v(n−1) to v(n) = ρ(v). Then l[v′] = l[ρ(v)] = c = l[w]. Let v′ = v′0c

j and
w = w0c

j with j ≥ 1 as large as possible. Observe that the generators in
the maximal 2-generator suffix of v′0 have names equal to those of c and l[v].
Let l[w0] = d. If d = l[v]±1 then we are done. If d = c, then l[v′0] = l[v]±1

and the required result follows by applying (2) inductively to v′0 and w0.

We complete the proof of (2) by showing that d cannot have a name different
from that of c and l[v], so suppose that it does. Now l[v′0] is equal to c or
to l[v′0] = l[v]. Suppose first that l[v′0] = c. Then Lemma 3.4 (2) applied to
v′0 and w0 shows that {c, d} cannot be a free pair. If {c, d} is a commuting
pair then, by hypothesis, {d, l[v]} is a free pair but, since the generators in
the maximal 2-generator suffix of v′0 have names equal to those of c and
l[v], Lemma 3.4 (1) applied to v′0 and w0 again gives a contradiction. Hence
{c, d} is a braid pair, and applying (2) inductively to v′0 and w0 yields a
contradiction.

Exactly the same argument (but with c replaced throughout by l[v])) ex-
cludes the possibility that l[v′0] = l[v]. This completes the proof of (2), and
(3) follows from (1) and (2).

It remains to prove (4), so assume that {l[v], l[w]} is not a braid pair. Then
by Lemma 3.4 (2), {l[v], l[w]} is a commuting pair, and furthermore {l[v], c}
cannot be a free pair. If {l[v], c} is a braid pair then we contradict (3) applied
to v and ρ(v), so {l[v], c} must be a commuting pair. Hence c = l[pre[v(n−1)]],
and the first τ -move of the final reduction v(n−1) → v(n) is a κ-move. If
c = l[w] then v(n−1) ends in l[w]l[v], so (4) is true. Otherwise, we have
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c = l[pre[w(n−1)]] and c, l[v] and l[w] all commute. Then (4) follows by
applying (4) inductively to the geodesic representatives pre[pre[v(n−1)]]l[v]
and pre[pre[w(n−1)]]l[w] of fc−1. �

Finally we need to adapt [5, Proposition 7.3] to our new hypotheses as
follows.

Proposition 3.6 Let f ∈ G and suppose that xi, xj ∈ X with i 6= j form
a braid pair. Then f has a unique left divisor LDij(f) ∈ G(i, j) of maximal
length. Furthermore, if w is any geodesic word representing f , and u is the
maximal {xi, xj}-prefix of w, then LDij(f) =G uar for some r 6= 0 with
a ∈ {x±1

i , x±1
j } and |LDij(f)| = |u|+ r.

Similarly, f has a unique right divisor RDij(f) ∈ G(i, j) of maximal length,
to which the corresponding results apply.

Proof: Order the monoid generators of G such that x±1
i , x±1

j (in some
order) come first, and let w′ be the shortlex least representative of f using
this ordering with maximal {xi, xj}-prefix u′.

Let w be an arbitrary geodesic representative of f and let u be the maximal
{xi, xj}-prefix of w. We consider the process of reducing w to its shortlex
form w′ by considering each letter of w in turn, and reducing the prefix
ending in that letter to shortlex form. Suppose that w0 = w, that w reduces
through the sequence of words w(1), w(2), . . . to w(n) = w′ and that u0 =
u, u1, . . . , un = u′ is the corresponding sequence of maximal {xi, xj}-prefixes.

By [8, Proposition 3.3], the prefix of length k in wk is either already shortlex
reduced, or can be reduced to shortlex form with a single leftward lex reduc-
ing sequence. Such a reduction cannot change a letter of uk to a letter with
name not in {x±1

i , x±1
j }, since that would be shortlex increasing. So either

uk+1 = uk or uk+1 is the shortlex reduction of uka for some a ∈ {x±1
i , x±1

j }.

Suppose that uk+1 6= uk. Without loss of generality we suppose that a has
name xi (rather than xj). Let b be the letter in w(k+1) immediately after
uk+1.

We first consider the case where {a, b} is a braid pair, and so the move that
appends the letter a to uk is a β-move. Then by [8, Lemma 3.7(2)] the next
letter other than b in w(k+1) is a±1. So if subsequent reductions occur that
increase the length of the maximal {xi, xj}-prefix, then they all involve a
penultimate β-move involving a and b, and so they all adjoin the same letter
a to the maximal i, j-generator prefix. (We can’t adjoin a and then a−1 or
the word would not be geodesic!)
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Suppose, on the other hand, that {a, b} is a commuting pair, and so the move
that appends the letter a to uk is a κ-move. Then by hypothesis, {b, xj} is
a free pair. So, applying Lemma 3.4 (1), we see that, in this case too, all
subsequent reductions that increase the length of the maximal {xi, xj}-prefix
must adjoin the same letter a.

So we have u′ =G uar with |u′| = |u| + r, as claimed. Since this equation
holds for any choice of w, we have proved that (u′)G is the unique longest
left divisor of f in G(i, j). The proof for the maximal right divisor is similar.
�

We are now ready to prove Proposition 3.2, from which FFTP follows.

Proof of Proposition 3.2: The proof of (1) is by induction on |v|. If
{l[v], l[w]} is a braid pair, then the proof is similar to that of [5, Proposition
7.5], but using Propositions 3.6 and 3.5 in place of [5, Proposition 7.3] and
[8, Proposition 4.5]. Lemma 3.4 (2) implies that {l[v], l[w]} cannot be a free
pair, so it remains to deal with the case where {l[v], l[w]} is a commuting
pair.

If l[w] = l[pre[v]] then the single κ-move l[w]l[v] → l[v]l[w] has the required
effect on v. Otherwise, by Proposition 3.5 (4), there is a geodesic represen-
tative of f ending in l[w]l[v]. By induction, a rightward critical sequence
S can be applied to pre[v] to yield a word ending in l[w], and this can be
followed by the κ-move l[w]l[v] → l[v]l[w] (which must be combined with the
final move of S should that be also a κ-move) to yield the required sequence
for v.

This completes the proof of (1) and, if v is as in (2), then wG has a geodesic
representative ending in a−1, and so (2) follows from (1). �
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