
Standard Errors and Confidence Intervals 

Introduction 
In the document ‘Data Description, Populations and the Normal Distribution’ a 
sample had been obtained from the population of heights of 5-year-old boys.  If we 
assume that this variable has a Normal distribution (an assumption that is, in fact, 
entirely reasonable) then it will have a population mean, μ, whose value is very likely 
to be of interest.  As this is a population parameter we will never know its true value, 
because we will never have a complete enumeration of the population.  Consequently 
we will have to content ourselves with knowing what we can about μ on the basis of 
random samples drawn from the population. 

The natural way to estimate μ is to compute the mean, m, of the sample and say that 
this value is our estimate of μ.  The mean of the sample of 99 heights in the sample 
given in ‘Data Description, Populations and the Normal Distribution’ is 108.34 
cm.  Had we only measured the heights of the first ten boys on this sample the value 
obtained would have been 107.77 cm.  If 20 boys had been measured then the value 
would have been 107.68 cm.  For a sample of 1000 heights, the mean would have 
been 108.01 cm. (this is a hypothetical sample generated in the way described in 
‘Data Description, Populations and the Normal Distribution’ assuming a 
population mean of 108 cm and a population SD of 4.7 cm).  These results can be 
summarised in the following table: 

Sample size Sample mean (cm.) 
10 107.77 
20 107.68 
99 108.34 

1000 108.01 
 
Each of these sample means is a legitimate estimate of μ - indeed, a single height 
measurement, such as the first measurement, 117.9 cm, is a legitimate estimate of μ.  
Faced with this choice, which mean should be chosen and, more importantly, why? 

If issues of resources are ignored (see later), then most investigators would intuitively 
say that the mean of the sample of size 1000 was the best one.  This intuition would 
be based on the notion that by using data from 1000 boys, the sample mean was based 
on more information and so must be better.  A slightly more precise way of saying 
this is to say that a large sample will provide a more representative cross-section of 
the population and therefore the mean of this sample would be closer to the mean of 
the whole population than a mean based on a smaller sample. 

Principles behind the Standard Error 
The observation that the mean of a large sample is, in some sense, going to be closer 
to the mean of the population is the key to a more precise understanding of why the 
mean of a larger sample is ‘better’ than the mean of a smaller sample.  In order to 
demonstrate this, and to formulate more precisely what is meant by ‘better’, it is 
useful to generate not just one sample of data from a population, but many samples of 
the same size from that population. If we postulate particular parameter values (such 
as μ = 108 cm, σ=4.7 cm, as was done above) then the computer can generate any 
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number of samples of any given size.  Of course, this is not at all how things are in 
practice, where parameters are unknown.  Moreover, drawing even a single sample 
from a population involves a great deal of work and drawing many samples is out of 
the question.  However, the following is merely to demonstrate the important ideas: 
how the repeated drawing of samples is circumvented in practice is explained the next 
section. 

 
Suppose that 500 samples, each of size 10 are drawn a Normal population with mean 
108 and standard deviation 4.7 (values that accord closely with those for the heights 
of five-year-old boys).  The mean of each of these samples can be computed and a 
histogram of the resulting 500 means can be plotted: see figure 1. 
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Figure 1 
 
The principal thing to note about figure 1 is that the histogram is much less dispersed 
than the corresponding histogram of individual heights seen in figure 3 of ‘Data 
Description, Populations and the Normal Distribution’.  The data in the latter 
occupied the range from 95 to 120 cm whereas the figure above is largely confined to 
the interval 105 to 112 cm.  Two other features of figure 1 should also be noted: first 
the distribution of the sample means does appear to be centred on μ = 108 and second 
the distribution appears to have the shape of a Normal distribution. 
 
Repeating this exercise but with 500 samples each of size 1000 gives the histogram in 
figure 2.  This histogram is also centred on 108 cm but is even less dispersed than that 
in figure 1, with all the sample means being between 107 and 109 cm and virtually all 
of them being between 107.5 and 108.5 cm. 
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Figure 2 
 
The difference between figures 1 and 2 clearly shows the benefit of taking larger 
samples and provides the basis for preferring one mean over another.  Means based on 
larger samples provide more precise estimates of the underlying population mean 
because the distribution of the sample mean becomes more concentrated about μ as 
the sample size increases.  Indeed, it is possible to be quantitative about this, as the 
standard deviations of the distributions in figures 1 and 2 measure how precisely the 
sample mean estimates the population mean.  The standard deviation of the means of 
samples of size 10 (figure 1) is 1.54 cm and the corresponding figure for samples of 
size 1000 (figure 2) is 0.20 cm.  This figure measures how precisely the sample mean 
estimates the population mean and is called the standard error of the mean (SEM) or, 
more simply, the standard error (SE). 
 

Calculating the Standard Error from a single sample 
Figures 1 and 2 demonstrate how the standard error gives a useful measure of how far 
a sample estimate can be expected to depart from the underlying parameter.  
However, in order to compute a value for the SE not one but many samples had to be 
drawn from the population.  This was achieved by asking the computer to generate the 
samples.  While this is a useful device for illustrating important ideas, it is plainly 
artificial and does not provide a method that can be applied in practice. 
 
The solution to the problem is to use a theoretical result of great importance in 
statistics.  This result states that: 

If a variable has population standard deviation σ then the standard error of 

the mean of a sample of size n is 
n
σ . 
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So, the SE of the mean of a sample of size 10 is σ/√10 ≈ 0.316σ, and that of a sample 
of size 1000 is ten times less than this, namely 0.0316σ.  For a standard deviation of 
4.7 these figures are 1.49 and 0.149 cm respectively.  These are broadly similar to the 
values obtained for the standard deviations of the distributions pictured in figures 1 
and 2, namely 1.54 and 0.20 cm respectively. 
 

The value of this formula is that we can estimate the quantity 
n
σ  from a single 

sample.  The population standard deviation σ can be estimated by the standard 
deviation, s, of the single sample that is to hand, so the estimated SE is computed as 

n
s . 

Nomenclature 
It might be asked, when the SE is simply the standard deviation of the distribution of 
sample means, why a term other than standard deviation is necessary.  In fact a 
reasonably cogent argument can be made for abandoning the term standard error.  
However, there are at least three reasons why standard error is used. 

i) While the standard error is a form of standard deviation, it is a very special 
form. It is the standard deviation of a hypothetical distribution that is never 
actually observed.  Values for the standard error usually need to be computed 
using a theoretically derived formula. 

ii) Standard errors and standard deviations are put to different uses.  Standard 
deviations are descriptive tools that indicate the dispersion in a sample.  A 
standard error is an inferential tool, which measures the precision of estimates 
of population parameters. 

iii) The fact that a standard error is a form of standard deviation can readily give 
rise to confusion.  Standard error is the term that has been widely used for the 
standard deviation of the distribution of sample means and to change 
nomenclature now may cause even greater confusion. 

Using the Standard Error 
The mean of the sample of 99 heights given in  ‘Data Description, Populations and 
the Normal Distribution’ is 108.34 cm and its standard error is 0.52 cm.  While the 
foregoing discussion shows that the SE is a useful measure of how well the mean of 
this sample estimates the population mean μ, it is not clear precisely how this 
information should be used. 
 
It is commonplace to indicate the ‘error’ in a quantity by quoting the value plus or 
minus the estimated error.  Perhaps we could quote the mean as 108.34 ± 0.52 cm.?  
Certainly, this is often the impression given in the medical literature, where it is 
common to find table headings of ‘Mean (± SE)’ and graphs with bars that are a 
standard error in length stretching out above and below some mean.  However, this is 
a misleading practice that should be discouraged.  This is because it invites the reader 
to suppose that the μ must lie between 108.34 – 0.52 = 107.82 and 108.34 + 0.52 = 
108.86 cm., which is false. 
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The problem can be understood by recalling that for a Normal distribution most 
values (in fact about 95% of them) lie between σμ 2−  and σμ 2+ .  As the 
distribution of sample means has mean μ and standard deviation equal to the SE, there 
is a 95% chance that the sample mean, m, is between SE2±μ , which amounts to 
saying that there is a 95% chance that μ lies between SE2±m §.  Consequently it is 
much more accurate to assert that the population mean lies in the interval  
than that implied by headings such as mean ± SE.  For the sample of heights of 99 
boys, this interval is (107.3, 109.38), which is wider than the interval in the previous 
paragraph. 

SE2±m

Confidence Intervals 

For the reasons that have just been outlined, the interval ⎟
⎠

⎞
⎜
⎝

⎛
+−

n
m

n
m σσ 2,2  is, 

approximately, the 95% confidence interval for μ.  A more exact definition is 
available and is explained in the Appendix. 

An alternative name, widely used by methodological statisticians but not often 
encountered in the applied literature, is interval estimate (of μ).  This is in distinction 
to the single-number estimate m, which would be referred to as a point estimate.  This 
terminology reflects the fact that while a single value might have advantages as an 
estimate of a parameter, a single value cannot adequately acknowledge the uncertainty 
in the estimate.  For example, in a clinical trial of two agents intended to reduce blood 
pressure, it would be difficult to interpret the outcome that mean blood pressure on 
treatment A is 1 mmHg lower than on treatment B.  If a confidence interval on this 
difference was (-3, 5) mmHg then it could be reasonably concluded that there was no 
material difference between the effect on blood pressure of A and B.  On the other 
hand if the interval was from (-30, 32) mmHg then there could well be an important 
difference between the treatments, even though its precise nature has not been 
adequately elucidated by this trial.  The difference between these alternative outcomes 
has only become apparent through the use of confidence intervals.  It is for this reason 
that many medical journals now insist on the use of confidence intervals in the 
presentation of results. 

Degree of Precision 
 
It should be noted that the SE decreases as the sample size increases, because the 

denominator in the ratio 
n
σ  gets larger.  This is in distinction to the standard 

deviation, which does not have a tendency to get larger or smaller as n increases – the 
sample standard deviation, s, simply becomes a better estimate of σ as n increases.  
However, the square root in the formula means that the SE does not decrease with 
sample size as quickly as might be hoped: in order to halve the SE the sample size 
must quadruple. 
 

It follows that an experimenter prepared to collect a sufficiently large sample could 
have a SE that was as small as they liked.  However it is important to ensure that an 
                                                 
§ This is more or less true, but a slight technicality has been overlooked here 
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estimate has a precision that is appropriate to the purpose of the investigation, rather 
than one that is arbitrarily high.  Collecting data on sufficient patients to determine th
mean blood pressure of a group to within 1 mmHg is likely to be a waste of time and 
money. 

Distribu

e 

tion of sample mean 
 

 important feature of the sample mean.  Figures 1 
nd 2 show that the means of samples of Normally distributed variables do 

uted can 

ibuted, 
e sample means have a distribution that is often very close to a Normal distribution.  

This is a useful place to explain an
a
themselves have a Normal distribution.  It is this fact that makes our definition of a 
confidence interval work: only because the sample mean is Normally distrib
we assert that 95% of sample means are with 2 SEs of the population mean. 
 
However, even when the samples are of variables that are not Normally distr
th
This is a phenomenon explained by the Central Limit Theorem (CLT) and is 
illustrated in figure 3. 
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(b) means of samples of size 10 (c) means of samples of size 50 
Figure 3 

 
Figure 3 (a) is a histogram of 5000 observation from a population that has a skewed 
istribution.  Figure 3 (b) is a histogram of the means of 500 samples, each of size 10 

 

ls of 
planation is as follows.  The mean of 

d
and figure 3 (c) is the corresponding histogram for samples of size 50.  It is clear that
the act of taking a mean of just ten observations has produced a quantity that has a 
much less skewed distribution and taking the mean of 50 observations gives a 
distribution that appears very close to Normal. 
A technical description of why this is requires the reader to assimilate the detai
the CLT.  However, something of a heuristic ex
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d) 

the population shown in figure 3 (a) is 1.649 and the skewness can be thought of as 
arising from the fact that a necessarily positive the variable has substantial variation.  
Consequently, large departures from mean with this value can only occur through 
values larger than the mean, so an asymmetric distribution is inevitable.  On the other 
hand, sample means will tend to be distributed close to the population mean (at lea
for sufficiently large samples), so they will deviate from the population mean by 
amounts that are small enough that the shape of the distribution is not rendered 
asymmetric by the fact that the sample means must be positive. 
 
Appendix: exact form of the confidence interval (Not Assesse
 

nsm /2×± .  While this versioThe 95% confidence interval was introduced as n of the confidence 
terval is adequate for many practical purposes it is, in fact, only an approximation to a more exact 

cs 
y 

in
version.  An explanation of why this is so is given below, so that the reader will not be confused by 
differences between the above definition and definitions found in textbooks.  In addition, most statisti
programs will use the exact method, so this will explain discrepancies between intervals calculated b
widely used programs and using nsm /2×± . 

There are two reasons why nsm /2×±  is only approximate.  The first is a minor point and stems 
from the fact that 95.45% of a No ionrmal populat  lies between two standard deviations below and two 

he multiplie al 

hich, because it depends on a parameter, σ, is unknown.  The 

above the mean.  Changing t r ‘2’ to the somewhat less memorable ‘1.96’ gives an interv
that encloses 95% of the population. 
 
The second point is more subtle and involves a point which has been glossed over in the above 
iscussion.  The SE is actually σ/√n wd

calculated confidence interval nsm /2×±  has substituted the sample standard deviation, s, fo
the formula for the standard error.  However, just as m is not an exact estimate of μ, neither does s giv
the exact value for σ.  Moreove y about σ more in smaller than in larger samples.  A 
consequence is that the interval 

r σ in 
e 

r, s tends var
nsm /2×±  tends to be too narrow and gives less than 95% 

confidence that it encloses μ.  The solution is to replace the multiplier ‘2’ by a larger value¶.  How
the value chosen will depend on ize, with larger values being needed for smaller sa
With large samples, typically in excess of 100, s will be a good estimate of σ and the exact 95% 
confidence interval will be very close to 

ever, 
the sample s mples.  

nsm /96.1 ×± .  With smaller samples the discrepancy is 
greater.  This is illustrated in the following table, in which the approximate 95% confidence interval, 

nsm /2×± , is compared with the exact version, for both the full sample of 99 heights from ‘Data
Description, Populations and the Normal Distribution’ and for the sample of just the first ten 

 
 Approximate Exact 

 

heights. 

Sample of 10 heights (104.21, 111.33) (103.74, 111.80) 
Sample of 99 heights (107.29, 109.39) (107.30,109.38) 

 
It can be seen that the exact interval is noticeably wider for the smaller sample.  For samples of size 99 
the difference is unimportant (and, to two decimal places, not apparent). 

                                                 
¶ It is, in fact, the 97.5% point of a Student’s t distribution with n-1 degrees of freedom 
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