Notes for running HABCS

Guiyuan Lei*

27 Feb - 29 March, 2006

HdBCS (Bayesian Covariance Selection in High-Dimensions) is designed
by Adrian Dobra (adobra@stat.duke.edu). It is a package to perform covari-
ance selection for datasets with tens or possibly hundreds of thousands of
variables. Codes can be downloaded from
http://www.stat.duke.edu/~adobra/hdbecs.html

1 Run MPICH on single machine

This HABCS is an MPICH program, there is master() and slave() in the code
which means at least two processes are needed. A set of steps need to be
done for ssh to work properly with mpich. Ssh should be configured to allow
communication between processes/nodes without password. In order to test
this mpich program in a single machine, ssh should be able to access local-
host so that communication is allowed between (virtual) multiple processes
within local node.

1.1 Configue ssh for MPI

1. ssh—keygen —t dsa —b 1024 —f ~/.ssh/gl ssh
Then enter passphrase. Two files will be generated.

2. c¢d ~/.ssh
cat gl_ssh.pub > authorized keys

3. ssh—add ~/.ssh/gl ssh

*Guiyuan.Lei@ncl.ac.uk



4. run MPI program, for example
mpirun -np 8 gibbsreg.exe

5. Deactivate the ssh agent by using ssh—add —d ~/.ssh/gl ssh. After
deactivate, if you want to run ssh without password, you should run
the command ssh—add ~/.ssh/gl_ssh again.

1.2 Allow ssh localhost

In order to run MPICH on a single machine, ssh should be configured to
allow communication between (virtual) processes within one node without
password.

Add line:

sshd:127.0.0.1

in the file /etc/hosts.allow so that ssh is able to access localhost.

2 Compile mpich code: mix c++, fortran,
blitz++ and lapack

The code was written in c++, also uses publicly available software packages
including blitz++ and lapack, so it is a bit difficult to compile it. In my
compg machine, I use the following command for STEP1:

g++ -c gibbsreg.cpp -1/usr/lib/mpich/include

mpif77 -lIstdc++ gibbsreg.o -lblas2 -llapack -lg2c¢ -Im

For STEP2, to compile:
g++ -c graphlist.cpp
g++ -c startpoint.cpp -I1/usr/lib/mpich/include
mpif77 -o startpoint.exe -lstdc+-+ graphlist.o startpoint.o -lblas2 -llapack -
lg2c -lm

Compiling STEP3 is simaliar to that of STEP2. Note that I have blas2
installed in my machine, so I use -1blas2 instead of -lblas. The header file
of mpi and blitz (random number generator) maybe different in different
machine, so need to be modified also.



3 One bug in STEP1: Filtering

This first step is for filtering possible predictors for each variable by selecting
good regression models from thousands of candidate predictors. The possible
predictors are stored in pv(i) for each gene i. The neworks generated in this
step are dependent networks.

When I use small number of genes and run the STEP1 (gibbsreg.cpp), I
got "message truncation” error. This is because the size (npred + 2) of ar-
ray workresults maybe larger than number of genes (NumberO fGenes), so
the number of int in MPI_Recv(workresults, NumberO fGenes,...) is smaller
than the number of int in MPI_Send(&workresults,npred + 2,...).

The array workresults is used to record the possible predictors of ”tar-
getGene”, the first and second elements of this array (workresults[0] and
workresults[1]) are used to store "targetGene” and "npred” (number of pre-
dictors), so the size of array workresults is (npred+2). The problem is that
the number of possible predictors may be as large as (NumberO fGenes — 1)
because all other genes can be possible predictors of the targetGene. So
(npred + 2) may be as large as (NumberO fGenes + 1).

To correct this bug:

(1) The array workresults should be defined (both in slave and master) as
workresults|NumberO fGenes+1] instead of workresults[NumberO fGenes|.
(2) In master(), replace MPI_Recv(workresults, NumberO fGenes,...) with
MPI_Recv(workresults, NumberO fGenes + 1,...). Note that there are two
MPI_Recv(workresults, NumberO fGenes,...) should be replaced.

One thing related to this bug. As a rule, for sparse newtwork, the number
of possible predictors shall be smaller than (NumberO fGenes — 1). But I
noted that the array workresults is not for record the best model, but for
union of all models during the search process.

in slave():

J=0;

for(i = 0;i < NumberO fGenes;i + +)
{ if(varFreqli] > 0)

{workresults|2 + j] = i;



—

The above code means that all predictors appeared in any models during
the model search process will be recorded in the array workresults. That is
why npred would be (NumberO fGenes — 1). Is it better to set threshold
(like model average) here?

4 STEP2: Generating good starting models

This step is to generate compositional networks, that is Direct acyclic graph
(DAG) here, from dependent networks. The idea is to assembly the whole
DAG from collections of all regression models by ordering the nodes. The
compositional predictors cpv(i) is selected from puv(i) (which is generated in
first step).

Parameter “nGraphsToGenerate” is the number of starting models you
want to generate. These starting models are used in SETP3 for improving
mdoel.

If use 2 processes for MPI,

mpirun -np 2 startpoint_g100.exe (-g100 means dealing with 100 genes)
the run is terminated with the following error message:
“p4_error:interrupt SIGFPE:8

killed by signal 2”

If use 8 processes
mpirun -np 8 startpoint_gl00.exe
It is ok.

This “number of processes” kind problem is strange, bug or some other
issues? I don’t know.



5 STEP3: Improving the starting models gen-
erated at STEP2

In this step, the starting points/models (which are generated in STEP2) are
improved in a procedure (simulated annealing) that converges to local mod-
els of the posterior distribution over the space of DAGs.

1. This program should be run separate instance of the program from
each starting model. So set the parameter “startPoint” as 1, 2, ---,
nGraphsToGenerate respectlly and run the program nGraphsToGenerate
times. In each run, why should use EXACTLY eight processors?

2. Removing un-necessary files by running rmdag.exe. Also should specify
which starting model to use (parameter “startPoint”);

4

3. Concatenate the “.sample” files associated with each starting point in
an overall sample file with information about all the models generated.
For example, type:
cat jcgs.89x100.rma.dat.?.sample > jcgs.89x100.rma.dat.sample

4. Construct the moralized undirected graph associated with each DAG
and calculates the average weight of each edge present in these graphs.



