
MAS345 Algebraic Geometry of Curves: Notes

AJ Duncan, September 29, 2003

0 Introduction

Background

As we shall see in due course anAffine Algebraic CurveC is the collection of points

C = {(u, v) ∈ k × k|f(u, v) = 0}

wherek is a field andf(x, y) is a polynomial with coefficients ink (e.g. the set of points(x, y)
satisfying2x2 + y3 − xy = 0 in R× R).

Real algebraic curves, that is curves

C = {(u, v) ∈ R× R|f(u, v) = 0}

wheref(x, y) is a polynomial with coefficients inR have been studied for over two thousand
years. For instance, the Greeks described Real curves as loci of points: a circle is the locus
of points at a fixed distance from a pointO. Nowadays the theory of real algebraic curves has
applications in many areas, for example mechanical engineering, optics, computer visualisation
and coding theory.

A problem studied by the Greeks was that of ‘Doubling the cube’. Given a cubeD with
edges of lengtha (and so of volumea3) construct a cube of volume2a3. The problem is to
find the length of an edge of such a cube. That is, to findx with x3 = 2a3. In about 350b.c.
Menaechmus gave the solution as the intersection of the two curvesa3y = x2 andxy = 2. The
Greeks wasted a lot of time trying to construct these two conics with ruler and compasses; a task
we now know to be impossible (see any account ofGaloisTheory).

With the introduction of a systematic algebraic notation in 17th Century and the idea de-
veloped by Descartes and Fermat of describing the plane in terms of Cartesian coordinates the
theory of algebraic curves took on new life. In due course, around 1700, Newton made a study
of cubiccurves, which are those described by polynomials of degree 3. He classified them and
described 72 different kinds. His investigations also included an examination ofsingularitiesof
curves, that is points at which they have no uniquely defined tangent. Much of this course is
based on modern interpretation of the methods of Newton.

Later it was realized that it was useful, and in many cases more illuminating, to look at curves
in the complex plane, described by polynomials with complex coefficients. Furthermore it was
discovered that adding points at infinity to the line to obtain projective space made it easier to
understand the behaviour of curves. By the end of the nineteenth century Dedekind and Weber
had begun the study of curves and surfaces in projective spaces over an arbitrary field (instead of
the complex or real numbers).

Algebraic curves are today reasonably well understood: that is a classification of curves
has been made and the intersections of curves can be described. For higher dimensional objects
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(zeroes off(x1, ..., xn) = 0, etc.) no such classification exists and the description of intersections
is a difficult task. However the successful theory of algebraic curves provides a base from which
to work on the general theory.

Applications

In almost all branches of mathematics some aspect of algebraic geometry is lurking. Here
is one example. A famous problem of number theory is Fermat’s conjecture: ifn is an integer
n > 2 then there are no positive integer solutions to

xn + yn = zn .

Reformulate the equation as

(
x

z
)n + (

y

z
)n = 1

and this problem becomes that of deciding whether the curve

rn + sn − 1 = 0

has any points inQ×Q. The recent proof of this result by Wiles is based to a large extent on the
theory of Elliptic curves.

The theory of Algebraic Curves is the basis for an encryption system that is widely used in
commercial applications. In the last part of the course the construction underlying these codes
will be studied briefly.

Aims of the Course

The course is an introduction to Algebraic Geometry. We shall concentrate on the simplest
case of the objects studied in this field, that is on Algebraic Curves, mainly over fields of char-
acteristic zero, namelyC, R andQ, but sometimes also over fields of finite characteristic(Zp,
Zp2 , ...). We shall study curves in Affine and Projective space. The primary object is to under-
stand how curves intersect, both with each other and themselves.

Further Reading

Library: Section 514.2
E Brieskorn & Kn̈orrer, Plane Algebraic Curves, (nice pictures).
J Dieudonne, History of Algebraic Geometry, (worth browsing through).
C G Gibson, Elementary Geometry of Algebraic Curves, (well written, lots of examples).
F Kirwan, Complex Algebraic Curves, (well presented at about the right level).
M Reid, Undergraduate Algebraic Geometry, (also about the right level but not as well explained
as Kirwan’s book).
R J Walker, Algebraic Curves, (good background reading).
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1 Fields and Polynomials

Fields

This subsection is mainly for background reading. The only parts of the section you need
to know for assessment are Examples1.1 numbers1 and3. A field consists of a setk together
with binary operations of addition+ and multiplication∗ onk that satisfy the field axioms listed
below.

Field Axioms

k1. x+ y ∈ k, for all x, y ∈ k (closure of+).

k2. There exists an element0 ∈ k such thatx+ 0 = x, for all x ∈ k (identity for+);

k3. If x ∈ k then there exists an element−x ∈ k such thatx+ (−x) = 0 (inverse law for+).

k4. x+ y = y + x, for all x, y ∈ k (commutative law for+).

k5. (x+ y) + z = x+ (y + z), for all x, y, z ∈ k (associative law for+).

k6. x ∗ y ∈ k, for all x, y ∈ k (closure of∗).

k7. There exists an element1 ∈ k such thatx ∗ 1 = x, for all x ∈ k\{0} (identity for∗).

k8. If x ∈ k\{0} then there exists an elementy ∈ k such thatx ∗ y = 1 (inverse law for∗).

k9. x ∗ y = y ∗ x, for all x, y ∈ k (commutative law for∗).

k10. (x ∗ y) ∗ z = x ∗ (y ∗ z), for all x, y, z ∈ k (associative law for∗).

k11. (x+ y) ∗ z = (x ∗ z) + (y ∗ z), for all x, y, z ∈ k (distributive law ).

Note: We usually writeab instead ofa ∗ b.

Example 1.1.

1. Familiar fields areQ, R andC.

2. Another common example of a field isQ[i] the smallest subfield ofC containing bothQ
andi. Elements ofQ[i] are all of the forma + bi, wherea andb are inQ. All these fields
containZ.

3. The number of elements of a field is called itsorder. FieldsZ2, Z3,Z5 and in generalZp,
wherep is a prime are finite of order2, 3, 5 andp, respectively.

4. Any finite field has orderpn, for some primep and positive integern. In fact, up to
isomorphism, there is exactly one field of orderpn, called GF(pn), for each primep and
positive integern. The field GF(pn) containsZp, that is GF(p). The field GF(4) has4
distinct elements{0, 1, α, β} and addition and multiplication are defined according to the
following tables.
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+ 0 1 α β
0 0 1 α β
1 1 0 β α
α α β 0 1
β β α 1 0

∗ 0 1 α β
0 0 0 0 0
1 0 1 α β
α 0 α β 1
β 0 β 1 α

Note thatα2 = β and that1 + α + α2 = 2β = 0. Others finite fields of orderpn are
constructed similarly.

Every field either containsZ (and is infinite) or containsZp = GF(p), for some primep. A
field containingZ is said to havecharacteristic 0 whilst a field containingZp hascharacteristic
p. Given any primep the field GF(pn) ⊆ GF(pn+1). We may construct an infinite field of
characteristicp by taking the union∪n≥1GF(pn).

There are many cases of setsk in which the field axioms all hold except for axiomk8. In this
case we callk a commutative ring. For example, the integers,Z, and the integers modulon,
denotedZn, are commutative rings (even whenn is not prime). Ifk is a field andt a variable the
set of polynomials int with coefficients ink is a commutative ring (when polynomials are added
and multiplied in the usual way). We shall define polynomials in several variables and find that
these also form commutative rings.

Monomials and Polynomials

Definition 1.2. A monomial in x1, . . . , xn is and expression of the form

xα1
1 · · ·xαnn ,

wherex1, . . . , xn are distinct variables andα1, . . . αn are non–negative integers. Thedegreeof
the monomial above isα1 + . . .+ αn. Thedegreeof the variablexi is αi.

Two monomialsxα1
1 · · ·xαnn andxβ1

1 · · ·xβnn are equal if and only ifαi = βi, for i = 1, . . . , n.

Product of monomials

Multiplication of monomials is defined by the rule

(xα1
1 · · ·xαnn )(xβ1

1 · · ·xβnn ) = xα1+β1

1 · · ·xαn+βn
n .

Note: From the definition we have

(x0
1 · · ·x0

n)(xβ1

1 · · ·xβnn ) = xβ1

1 · · ·xβnn

and
(xα1

1 · · ·xαnn )(xβ1

1 · · ·xβnn ) = (xβ1

1 · · ·xβnn )(xα1
1 · · ·xαnn ).
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Definition 1.3. Let k be a field. Apolynomial f overk in variablesx1, . . . , xn is a sum

f = f(x1, . . . , xn) =
∑

α1,...,αn

aα1,...,αnx
α1
1 · · ·xαnn ,

where

1. α1, . . . , αn runs over alln–tuples of non–negative integers,

2. aα1,...,αn ∈ k, for all α1, . . . , αn and

3. aα1,...,αn = 0, for all but finitely manyα1, . . . , αn.

When convient we writeα for then–tupleα1, . . . , αn andaαxα for aα1,...,αnx
α1
1 · · ·xαnn . Two

polynomials
∑

α aαx
α and

∑

α bαx
α are equal if and only ifaα = bα, for all α. When writing

polynomials we use the following conventions.

1. We do not write downaα1,...,αnx
α1
1 · · ·xαnn for anyα such thataα = 0. We call the polyno-

mial with aα = 0, for all α, thezeropolynomial and write it as0.

2. We omit xαii from xα1
1 · · ·xαnn if αi = 0. In particular we writea instead ofax0

1 · · ·x0
n.

Thus2x2
1x

0
2x

3
3 is written as2x2

1x
3
3 and3x0

1x
0
2x

4
3 as3x4

3.

Definition 1.4. Let
f(x1, . . . , xn) =

∑

α1,...,αn

aα1,...,αnx
α1
1 · · ·xαnn ,

be a polynomial overk.

1. aα1,...,αn is called thecoefficientof the monomialxα1
1 · · ·xαnn .

2. If aα 6= 0 we callaαxα a term of f .

3. Thedegreeof the termaαxα is the degree of the monomialxα. Thedegreeof xi in the
termaαx

α is the degree ofxi in xα.

4. If f is not the zero polynomial then thedegreeof f is the maximum of the degrees of the
terms off and thedegreeof xi in f is the maximum of the degrees ofxi in the terms off .
If f is the zero polynomial thenf hasdegree−∞.

Example 1.5.

1. The following are polynomials in variablesx1, x2 andx3. The first two are monomials
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polynomial degree degree inx1

x1 1 1
x7

1x
3
2x

11
3 21 7

1 + x1 + x2 + 2x2
1 + x1x2 + 3x3

2x
2
3 5 2

0 −∞ −∞
1 0 0

x2
1 + x2

2 2 2
x7

3 + x3
2 + 3x3x2 + 3 7 0

2. The following is a polynomial inx, y andz.

f(x, y, z) = 3x3y19 + 2xyz8 − 2zy12 + 5xyz + 13x− 3z + 2.

The polynomialf has degree22 and the degree ofz in f is 8. The terms off are

3x3y19, 2xyz8, −2zy12, 5xyz, 13x, −3z, 2

which have degree22, 10, 13, 3, 1, 1 and2, respectively.

3. The polynomial2 has one term, namely2, of degree0. The polynomial0 has no terms and
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is of degree−∞.

The set of all polynomials overk in variablesx1, . . . , xn is denotedk[x1, . . . , xn]. We wish to
define addition of polynomials in such a way as to makek[x1, . . . , xn] a vector space overk with
basis the set of all monomials in variablesx1, . . . , xn. In particular this means that iff = axα

andg = bxα, for somea, b ∈ k, we require

f + g = (a+ b)xα.

This leads to the following definition

Definition 1.6. Let
f =

∑

α

aαx
α andg =

∑

α

bαx
α

be polynomials. Thesumf + g of f andg is

f + g =
∑

α

(aα + bα)xα.

It is easy to check that, with this definition of addition,k[x1, . . . , xn] is a vector space overk
with the required basis.

Example 1.7.

1. Let

f = x2
1 + x2

2 + x2
1x2

andg = 2x2
1 + x1x2 − 3x2

2 + 1 then

f + g = 3x2
1 − 2x2

2 + x2
1x2 + x1x2 + 1.
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2. Let f = 71x4y11z9 − 15xy5z + 33xyz + 4 andg = 9x4y10z9 + 10xy5z − 23xzy − 9 then

f + g = 71x4y11z9 + 9x4y10z9 − 5xy5z + 10xyz − 5.

We now wish to extend the definition of multiplication of monomials to multiplication of
polynomials in such a way as to make the vector spacek[x1, . . . , xn] into a commutative ring. To
simplify notation, ifα = α1, . . . , αn andβ = β1, . . . , βn we writeα+β = α1 +β1, . . . , αn+βn.
To meet our requirement we need to define multiplication so that iff = axα andg = bxβ then

fg = abxαxβ = abxα+β,

(where the second equality follows from the definition of product of monomials). Using axiom
F11 this means that iff =

∑

α aαx
α andg is as above then we require

fg =
∑

α

aαbx
α+β.

We are thus led to following definition of product.

Definition 1.8. Let
f =

∑

α

aαx
α andg =

∑

α

bαx
α

be polynomials. Theproduct fg of f andg is

fg =
∑

γ

cγx
γ,

where

cγ =
∑

α+β=γ

aαbβ.

Example 1.9.

1. Let f = xy + 1 andg = x+ y2. Then

fg = x2y + xy3 + x+ y2.
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2. Let f = x2 + y2 + 1 andg = xy2 + x3 + 2 then

fg = x3y2+x5+2x2+xy4+x3y2+2y2+xy2+x3+2 = 2x3y2+x5+2x2+xy4+2y2+xy2+x3+2.
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2 Affine curves

Definition 2.1. Let k be a field and letn be a positive integer.Affine n–space overk is the set

An(k) = {(a1, . . . , an) : ai ∈ k, for i = 1, . . . , n}.

We call the elements(a1, . . . , an) points of An(k).

Example 2.2.

1. The affine lineA1(k) whenk isR,Q, C andGF (p).

2. The affine planeA2(k), for the same fields.
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3. A3(k), for these fields.

A polynomialf ∈ k[x1, . . . xn] may be written asf(x1, . . . , xn) and thenf(a1, . . . , an) used
to denote the element ofk obtained by substitutingai for xi, for i = 1, . . . , n, throughoutf . If
f(a1, . . . , an) = 0 we say that(a1, . . . , an) is azeroof f .

Definition 2.3. Let f be a non–constant polynomial of degreed in variablesx, y over the field
k. Then the set of points

Cf = {(a, b) ∈ A2(k) : f(a, b) = 0}

is called acurve over k with equation f = 0. We say thatCf hasdegreed and is a curvein
A2(k).
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We shall refer toCf as the curvedefined by f and withpolynomial f . Note that a curve
may have many different equations as can be seen from the following examples. In spite of this
we often refer to the curveCf merely asC.

Example 2.4.

1. Examples of introduction and Exercises 1, Drawing curves.

2. A curve of degree1 is called aline.
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3. A curve of degree2 is called aconic.
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4. Curves of degree3, 4 and5 are called acubic, quartic andquintic , respectively.

5. Consider the curvesCf andCg, wheref = x2 − y andg = x4 − 2x2y + y2.

In A2(R) both these curves are parabolas andCf = Cg. This is no coincidence as (for

arbitraryk)

g = x4 − 2x2y + y2 = (x2 − y)2 = f 2.

Henceg(a, b) = 0 if and only if f(a, b) = 0. In some senseCg is Cf repeated twice. To

make this precise and to cope with the ambiguity inherent in this situation we look again

at polynomials.

Polynomials again

Lemma 2.5. Letf andg be elements ofk[x1, . . . , xn]. Then

1. degree(fg) = degree(f) + degree(g) and

AJD September 29, 2003



MAS345 Notes 15

2. degree(f + g) ≤ max{degree(f), degree(g)}

Furthermore, for1 ≤ i ≤ n,

3. the degree ofxi in fg is equal to[degree ofxi in f ] + [degree ofxi in g] and

4. the degree ofxi in f + g ≤ max{degree ofxi in f , degree ofxi in g}.

For example withf = x2 − y andg = x3y − 1 we havefg = x5y − x3y2 − x2 + y while

degree(f) = 2, degree(g) = 4 and degree(fg) = 6. Furthermore the degrees ofx in f , g andfg

are2, 3 and5, respectively. Alsof + g = x3y+ x2− y− 1 which has degree4 and in which the

degree ofx is 3. Note that iff is as above andh = 1− x2 then the degree off + h is 1, which

is strictly less thanmax{degree(f), degree(h)}.

Definition 2.6. Let f andg be elements ofk[x1, . . . , xn]. We say thatg dividesf or g is afactor
of f , writteng|f , if there exists an elementh ∈ k[x1, . . . , xn] such thatf = gh.

For examplex2yz − xz2 − xy3 + y2z has factorsxy − z andxz − y2.

Definition 2.7. A non–constant polynomialf over a fieldk is reducible if there exist non–
constant polynomialsg andh, overk, such thatf = gh. A non–constant polynomial isirre-
ducible if it is not reducible.

Example 2.8.

1. The polynomialxn is reducible ifn > 1 and irreducible ifn = 1.

2. The polynomialx2 − y2 is reducible asx2 − y2 = (x+ y)(x− y).
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3. Let f = x2yz − xz2 − xy3 + y2z.

Thenf = gh, whereg = xy − z andh = xz − y2, sof is reducible.

4. All polynomials of degree1 are irreducible.

To see this suppose thatf is a polynomial of degree1 and thatf = gh, whereg andh are

non–constant polynomials. Then

1 = degree(f) = degree(g) + degree(h).

If g andh are non–constant then degree(g) ≥ 1 and degree(h) ≥ 1. Hence1 = degree(g)+

degree(h) ≥ 2, a contradiction. Thusf is not reducible.

5. The polynomialf = x2 − y is irreducible.

We shall prove this. Suppose thatf is reducible. Then there exist non–constant polynomi-

alsg andh such thatf = gh. As g andh are non–constant they both have degree at least
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1. As 2 = degree(f) = degree(g) + degree(h) it follows, from Lemma2.5 part 1, that

degree(g) = degree(h) = 1. Hence we may writeg = ax + by + c andh = px + qy + r,

for some elementsa, b, c, p, q, r ∈ k. We now have

f = x2 − y = gh = apx2 + (aq + bp)xy + bqy2 + (ar + cp)x+ (br + cq)y + cr.

Comparing coefficients we have

ap = 1, (2.1)

br + qc = −1, (2.2)

aq + bp = bq = ar + cp = cr = 0. (2.3)

From (2.1), a 6= 0 andp 6= 0. Given thatcr = 0, eitherc = 0 or r = 0. Let us first assume

AJD September 29, 2003



MAS345 Notes 18

thatc = 0. Then, from (2.3) we havear = 0, and sincea 6= 0 sor = 0. Similarly, if r = 0

we obtainc = 0. Thereforec = r = 0. Similarly b = q = 0. However (2.2) now implies

0 = −1, a contradiction. We conclude thatf is irreducible.

6. In contrast to the last example the reducibility of the polynomialf = x2 + y2 depends
upon the ground fieldk.

If k = C the polynomial factorizes asf = (x + iy)(x − iy), sof is reducible overC. If

k = R the polynomial is irreducible. This follows from the uniqueness of factorization,

below. If k = Z2 then

(x+ y)2 = x2 + 2xy + y2 = x2 + y2,

so f is reducible overZ2. If k = Z3 it is easy to show, using the method of the above

example, thatf is irreducible.

7. As a final example we show that the polynomialf = x2−y3 is irreducible over an arbitrary
field k.
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Suppose then thatf = gh, whereg andh are non–constant polynomials. It follows from

Lemma2.5.3 that the degree ofx in g is 0, 1 or 2 and that the degree ofx in h is 2−(degree

of x in g). Suppose first that the degree ofx in g is 0. Theng ∈ k[y] andh = ax2 + bxy +

cx+ h′, whereh′ ∈ k[y]. Then

f = gh = gax2 + gbxy + gcx+ gh′.

The coefficient ofyrx2 in f , for r > 0, is equal to0 and it follows on comparing coefficients

that g is constant, a contradiction. Hence the degree ofx in g is not 0. Since the same

applies toh it follows that the degree ofx in both g and h is 1. Therefore there are

polynomialsg′ andh′ in k[y] such thatg = ax + g′ andh = bx + h′, with a, b non–zero
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elements ofk. We have

f = gh = abx2 + (ah′ + bg′)x+ g′h′.

Now f has no terms of degree1 in x, soah′ + bg′ = 0. Furthermoreg′h′ = −y3. We may

assume thatg′ = py2 andh′ = qy, with p, q ∈ k andpq = −1. Thenp 6= 0 andq 6= 0, so

ah′ + bg′ = aqy + bpy2 6= 0, a contradiction. We conclude thatf is irreducible.

Remark: A non–constant polynomial is irreducible if its only factors are constants and constant
multiples of itself. That is, iff is irreducible andg|f then eitherg is a constant org = af , for
somea ∈ k. Compare this to the situation in the integersZ. In Z the irreducible elements are
primes. The factors of a primep are±1 and±p.

Given a reducible polynomialf , of degreed, we can, as we have seen in the examples above,
write f = gh, where1 ≤ degree(g) ≤ d − 1 and 1 ≤ degree(h) ≤ d − 1. If either g or
h is reducible then we can repeat the process, factorizing into polynomials of lower degree.
Eventually we obtain an expression

f = q1 · · · qs,

whereqi is an irreducible polynomial. A factorization off into a product of irreducible polyno-
mials is called anirreducible factorization of f .

Theorem 2.9. Let f be a polynomial ink[x1, . . . , xn]. Thenf has an irreducible factoriza-
tion. This factorization is unique up to the order of the irreducible factors and multiplication by
constants.

Partial proof. We have shown above that a polynomial has an irreducible factorization. The
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second sentence of the theorem means that iff has irreducible factorizationsf = q1 · · · qs and

f = q′1 · · · q′t, thent = s and that

q1 = a1q
′
i1
, . . . , qs = asq

′
is ,

for somea1, . . . , as ∈ k and permutation(i1, . . . , is) of (1, . . . , s). We shall not attempt to prove

this here.

Example 2.10.

1. The polynomialx2 − y2 has irrreducible factorisation(x+ y)(x− y).

2. Let f = x2yz−xz2−xy3 +y2z. Thenf has irreducible factorisationgh, whereg = xy−z
andh = xz − y2. This follows from the previous example and the fact (which you should
check) thatg andh are irreducible.

Reducible and irreducible affine curves

Lemma 2.11. If f, g and h are non-constant polynomials ink[x, y] with f = gh thenCf =
Cg ∪ Ch.

Proof. If f = gh whereg andh are non–constant polynomials then, for all(a, b) ∈ A2(k) we

havef(a, b) = 0 if and only if eitherg(a, b) = 0 or h(a, b) = 0. Hence(a, b) ∈ Cf if and only if
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(a, b) ∈ Cg ∪ Ch. ThusCf = Cg ∪ Ch, as required.

Example 2.12.

1. The curve with equationx2 − y2 = 0.

2. The curve with equation(x2 + (y − 1)2 − 1)(x2 + (y − 2)2 − 4)(x2 + (y − 3)2 − 9) = 0.

Definition 2.13. Let f be an irreducible polynomial ink[x, y]. Then the curveCf is called an
irreducible affine curve.

Definition 2.14. Let f be a reducible polynomial ink[x, y] with irreducible factorizationf =
q1 · · · qs. Then we say thatCf is areduciblecurve and hasirreducible componentsCq1 , . . . , Cqs.

Note: If Cf has, as above, irreducible componentsCq1 , . . . , Cqs then it follows from Lemma2.11
that

Cf = Cq1 ∪ · · · ∪ Cqs .

Therefore every curve is a union of irreducible curves.

Example 2.15.

1. Lines are irreducible curves.

2. The curve with polynomialx2 − y2 has two irreducible components: the linesx + y = 0
andx− y = 0.
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Figure 2.1:The curve with equationx5 − x3y − x2y2 + y3 = 0.

3. Let f = x5 − x3y − x2y2 + y3. Thenf has irreducible factorizationf = gh, where
g = x2 − y andh = x3 − y2, and soCf has irreducible componentsCg andCh. If k = R
we can draw the curve, using Maple, and obtain a drawing: which looks as though it has
two components (Figure2.1).

4. The last example may be misleading as, inA2(R), curves which appear to have several
components may in fact be irreducible. For example the curve with equationy2 − x(x2 −
1) = 0, shown in Figure2.2 is irreducible overR.

5. The curve with equationx3 + x2 + y3 + y2 = 0 in A2(R) behaves even worse, having an
isolated point at the origin even though it is irreducible: see Figure2.3.

6. On the other hand curves which, when drawn, look irreducible may not be. For example
let f = x2 − 2xy + y2. Thenf = g2, whereg = x − y. The curveCf has2 irreducible
components both equal toCg, which is the liney = x.
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Figure 2.2:The curve with equationy2 − x(x2 − 1) = 0.
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Figure 2.3:The curve with equationx3 + x2 + y3 + y2 = 0.
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The Nullstellensatz

As we have seen above, iff andg are polynomials ink[x, y] andg|f thenCg ⊂ Cf . However,
this raises a question. Namely, ifCg ⊂ Cf , for some polynomialsf andg, does it follow that
g|f . The answer to this question depends ong and the fieldk and requires a further definition.
First we state the following result which gives a partial answer.

Theorem 2.16.Let k be a field and letf ∈ k[t] be a polynomial of degreed ≥ 0. Then the
following hold.

1. If a ∈ k thenf(a) = 0 if and only if(t− a)|f .

2. f has at mostd zeros.

Proof.

1. If (t−a)|f thenf(t) = (t−a)q(t), for someq ∈ k[t], sof(a) = 0, as required. The proof
of the converse depends on the fact that we can writef(t) = (t − a)q(t) + r(t), whereq
andr are polynomials ink[t] and degree(r) < degree(t − a). Given this fact, which we
shall not prove here, it follows thatr is constant, since degree(t−a) = 1. Now if f(a) = 0
we have0 = f(a) = r. Hencef(t) = (t− a)q(t) andt− a|f , as required.

2. This is proved by induction ond. It is clearly true ifd = 1. If d ≥ 1 andf has a zeroa
then we can writef = (t − a)q, for someq ∈ k[t]. As degree(q) = d − 1 the inductive
hypothesis implies thatq has at mostd− 1 zeros. The result follows.

The first part of this theorem answers the analogue of question posed above for case of polyno-
mials of one variable (under the the restriction thatg is linear).

If a field k has the property that every non–constant polynomialf ∈ k[t] has at least one zero
then we say thatk is algebraically closed. From Theorem2.16we may conclude that ifk is
algebraically closed andf is non–constant polynomial of degreed in k[t] then

f = a0(t− a1) · · · (t− an),

for someai ∈ k, with a0 6= 0. This follows by induction on the degreed of f . Note that, in this
expression forf , theai’s are not necessarily distinct. If we collect together all the repeated linear
factors then we can write

f = a0

k
∏

i=1

(t− bi)ri ,

with a0 6= 0, bi 6= bj wheni 6= j andr1 + · · ·+ rk = d. In this case we say that themultiplicity
of the zerobi is ri.
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Example 2.17.

1. The fieldC is algebraically closed.

This follows from a theorem of Complex Analysis. Hence any polynomial in one variable

overC is a product of linear factors. For example

t4 − 2it3 − 2it− 1 = (t+ i)(t− i)3,

so has one zero−i, of multiplicity 1, and another zeroi, of multiplicity 3.

2. The fieldR is not algebraically closed.

For examplet2 + 1 has no zero inR.

We also have the following which will be useful later.

Theorem 2.18.Let k be an infinite field and letf ∈ k[x1, . . . xn]. If f(a1, . . . , an) = 0 for all
(a1, . . . , an) ∈ An(k) thenf is the zero polynomial.

Again, this theorem answers a question similar to the one above. Note that we did not allow the
zero polynomial to be the equation of a curve and so the theorem tells us that no curve contains all
points ofA2(k), as long ask is infinite. The answer to our question is contained in the following
theorem.

Theorem 2.19 (Hilbert’s Nullstellensatz).Let k be an algebraically closed field and letf and
g be non–constant polynomials ink[x1, . . . xn]. Suppose that

1. g is irreducible and

2. f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ An(k) such thatg(a1, . . . , an) = 0.

Theng|f .
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We shall not prove this theorem. To see more plainly what it means for curves we state a
Corollary.

Corollary 2.20. Let g andf be polynomials ink[x, y], wherek is an algebraically closed field.
Assumeg has irreducible factorizationg = q1 · · · qs. If

1. Cg ⊂ Cf and

2. qi 6= qj, wheni 6= j,

theng|f . In particular if g is irreducible andCg ⊂ Cf theng|f .

Proof. Fix i with 1 ≤ i ≤ s. Sinceqi|g, if (a, b) ∈ A2(k) is such thatqi(a, b) = 0 we

haveg(a, b) = 0. As Cg ⊂ Cf this means thatf(a, b) = 0, for all (a, b) ∈ A2(k) such that

qi(a, b) = 0. As qi is irreducible it follows from the theorem thatqi|f . It now follows from the

uniqueness of factorization, and the fact that all theqi are distinct, thatq1 · · · qs|f . That is,g|f ,

as required.

The corollary tells us that if we stick to algebraically closed fields then we have a good cor-
respondance between curves and polynomials without repeated irreducible factors. In particular
if f andg are irreducible polynomials andCf = Cg theng = af , for somea ∈ k. If we drop
the requirement thatk is algebraically closed this theorem is far from true, as the next example
shows.

Example 2.21. Let k = R and consider the curveC with equationx2 + y2 + 1 = 0. This
curve has no points. Therefore it is contained in every other curve. Furthermore its polynomial
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is irreducible overR. However this polynomial does not divide the polynomial of every other
curve: in particular it does not divide any linear polynomial. This means Corollary2.20does not
hold inA2(R). Note also that the polynomialg = x2 + y2 + 2 defines the same (empty) curve in
A2(R), but thatg is not a constant multiple ofx2 + y2 + 1.
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3 Intersection Number

How can curves intersect with themselves and with each other? We start with intersections
of line and curve.

We’ll look at the ways in which curves and lines intersect. In particular we want to understand
tangents to points on a curve, because near a point we expect the curve to be approximated by its
tangent(s) at that point.
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Parametric form of a line

Let l be an affine line with equationax + by + c = 0. Note that(a, b) 6= (0, 0) as the poly-
nomialax+ by + c is of degree1. Suppose that a point(x0, y0) belongs tol. Then we make the
following description of the line.

The set of points of the linel is

{(x0 − bs, y0 + as) : s ∈ k}. (3.1)

To see that this holds suppose first that we have a point(u, v) of the form (3.1). That is, for

somes ∈ k

(u, v) = (x0 − bs, y0 + as).

Then

au+ bv + c = ax0 − abs+ by0 + abs+ c

= ax0 + by0 + c

= 0.
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Hence(u, v) ∈ l and{(x0 − bs, y0 + as) : s ∈ k} ⊆ l.

On the other hand suppose that(x1, x2) ∈ l. First assume thata 6= 0. In this case set

s =
y1 − y0

a
.

Then

x0 − bs = x0 − b
(

y1 − y0

a

)

=

(

ax0 − by1 + by0

a

)

=
−c− by1

a

=
ax1

a

= x1.
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Also

y0 + as = y0 + a

(

y1 − y0

a

)

= y1.

Therefore

(x1, y1) ∈ {(x0 − bs, y0 + as) : s ∈ k}

and so

l ⊆ {(x0 − bs, y0 + as) : s ∈ k}.

If a = 0 thenb 6= 0 and a similar argument holds. The result follows.
Now suppose we’re given anya, b, x0, y0 ∈ k with (a, b) 6= (0, 0). If we set

c = −(ax0 + by0)

then it follows from the above that the set (3.1) defines a line, with equationax + by + c = 0,
passing through the point(x0, y0).

We call (3.1) a parametric form of the linel with equationax + by + c = 0 through point
(x0, y0). If the meaning is clear we abbreviate this by sayingl has parametric form(x0− bs, y0 +
as). Note that the parametric form of the linel depends on the choice of point(x0, y0) ∈ l. We
call the ratio(−b : a) thedirection ratio of l.

Example 3.1.

The line l with equation2x + 5y + 1 = 0 contains the point(−3, 1) so has parametric form
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(−3− 5s, 1 + 2s) and direction ratio(−5 : 2).

The point(7,−3) also lies onl so(7− 5s,−3 + 2s) is another parametric form ofl.

The line with parametric form(5 − 3s, 2 − 9s) has equation−9x + 3y + 39 = 0, direction

ratio (−3 : −9) = (1 : 3) and passes through(5, 2).

Intersection polynomials

Let l be an affine line passing through the point(x0, y0) with parametric form(x0 − bs, y0 +
as), for s ∈ k. Letf be a polynomial ink[x, y] and letC = Cf be the curve with equationf = 0.
A point q ∈ A2(k) lies onl andC if and only if q = (x0 − bu, y0 + au), for someu ∈ k such
that

f(x0 − bu, y0 + au) = 0. (3.2)

This leads to the following definition.

Definition 3.2. We call the polynomial

φ(s) = f(x0 − bs, y0 + as)

an intersection polynomialof l andC.

Note thatφ depends on the choice of parametrisation ofl.
From (3.2) the points of intersection ofl andC correspond to thoseu ∈ k such thatφ(u) = 0.

Now φ(u) = 0 if and only if (s − u)|φ(s). (This follows from Theorem2.16.) Hence points of
l ∩ C are precisely the points(x0 − bu, y0 + au) such that(s − u)|φ(s). This prompts the next
definition.

Definition 3.3. Let q = (x0 − bu, y0 + au) be a point ofl, for someu ∈ k. The intersection
number I(q, f, l) of C andl at q is the largest integerr such that(s− u)r|φ(s).
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Example 3.4. Let f = x2 − y and letl1 be the line with equationx − y = 0, let l0 be the line
with equationy = 0 and letl′ be the line with equationy + 1 = 0.

Thenl1 has parametric form(s, s), l0 has parametric form(s, 0) andl′ has parametric form
(s,−1).

The intersection polynomials ofl1, l0 andl′ are

φ1(s) = s2 − s = s(s− 1),

φ0(s) = s2 and

φ′(s) = s2 + 1,

respectively.

1. φ1(s) has zeross = 0 ands = 1. These correspond to pointsq0 = (0, 0) andq1 = (1, 1)

onC ∩ l1. The intersection numbers of these points areI(q0, f, l1) = I(q1, f, l1) = 1, as

zeros ofφ1 have multiplicity1.
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If u 6= 1 andu 6= 0 and we setq = (u, u) thenI(q, f, l1) = 0, as(s − u) does not divide

φ1 in this case. Note that this is a general principle: ifq /∈ l ∩ Cf thenI(q, f, l) = 0 (as

long asl 6⊆ Cf ).

2. φ0(s) = s2 and has only one zeros = 0. This corresponds to the pointq0 = (0, 0) as

before but nowI(q0, f, l0) = 2.

3. The zeros ofφ′(s) depend onk. If k = R thenφ′(s) has no zeros soI(q, f, l′) = 0, for all

pointsq on l′. If you sketch the real curve you will see that it does not meetl′.

If k = C thenφ′(s) = (s − i)(s + i) so there are two points of intersection,q+ = (i,−1)

corresponding tos = i andq− = (−i,−1) corresponding tos = −i. Both factors ofφ′

are linear soI(q+, f, l
′) = I(q−, f, l

′) = 1. All other points ofl′ lie outsideC and have

intersection number zero.

AJD September 29, 2003



MAS345 Notes 36

If k = Z3 thenφ′(s) has no zeros as can be easily verified (ask has3 elements0, 1 and2).

Therefore all points of the linel′ have intersection number zero. InZ3 the linel′ consists

of the 3 points(0, 2), (1, 2) and(2, 2). Recalling the diagram of Example 2.4 we see that

none of these points lie onC.

If k = Z5 thenφ′(s) has zeros2 and3 and we can check thatφ1(s) = s2+1 = (s−2)(s−3).

Therefore there are two points of intersection,(2,−1) = (2, 4) corresponding tos = 2,

and(3,−1) = (3, 4) corresponding tos = 3. Both these points have intersection number

1.

Example 3.5.Let f = x2− y and letlm be the line with equationy = mx, wherem ∈ k. We’ve
covered the casesm = 0 and1 in the previous example. Thenlm has parametric form(s,ms).

The intersection polynomials oflm is

φm(s) = s2 −ms = s(s−m).
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We’ve covered the casem = 0 above. Whenm 6= 0 thenφm(s) has zeross = 0 ands = m.

These correspond to pointsq0 = (0, 0) andqm = (m,m2) onC ∩ lm. The intersection numbers

of these points areI(q0, f, lm) = I(qm, f, lm) = 1, as zeros ofφm have multiplicity 1. Note

that, if we are working overR orC, as|m| becomes very small the second point of intersection

becomes close to(0, 0). Whenm reaches zero the two points of intersection coalesce and we

have one point of intersection with intersection number2.

Suppose(x0, y0) ∈ l and thatl has parametric form(x0 − bs, y0 + as). If l ⊆ Cf then
φ(s) = 0, for all s ∈ k. It follows from Theorem2.18, thatφ is the zero polynomial (as long as
k is an infinite field). In this case(s − u)r|φ(s), for all r ≥ 0. Hence the intersection number
I(q, f, l) =∞, for all q ∈ A2(k).

Theorem 3.6. If C is an affine curve, with polynomialf of degreed ≥ 0, and l is a line with
l 6⊆ C thenl ∩ C has at mostd points, counted with multiplicity. That is

∑

p∈l∩C

I(p, f, l) ≤ d.
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The definition of intersection number depends on an intersection polynomial forl andC.
The intersection polynomial depends in turn on the parametric form for the linel. The parametric
form for l is determined by the choice of the point(x0, y0) on l. Note that the line with parametric
form (x0 − bs, y0 + as) has equationax + by + c = 0. Therefore it also has equationλax +
λby + λc = 0, whereλ is any non–zero element ofk. It follows that another parametric form
for l is (x0 − λb, y0 + λa): that is we may replace(a, b) with (λa, λb). We now show that the
intersection number is the same no matter which parametric form we choose forl. The remainder
of this section is background reading and not required for assessment.

Let p = (x0, y0) and define

Lp(s) = (x0 − bs, y0 + as).

First we investigate the result of changing(x0, y0). The original parametric form forl is Lp(s).
Suppose now thatp′ = (x1, y1) is a different point ofl. Thenl also has parametric form

Lp′(t) = (x1 − bt, y1 + at), t ∈ k.
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As p′ = (x1, y1) is a point ofl we havev ∈ k such that

p′ = (x1, y1) = (x0 − bv, y0 + av). (3.3)

There is also an intersection polynomialφ′ corresponding to the new parametric form forl,
namely

φ′(t) = f(x1 − bt, y1 + at).

Now suppose thatq is some point ofl, sayq = Lp(u), for someu ∈ k, and that using the
original intersection polynomialφ we haveI(q, f, l) = r. That is(s− u)r|φ(s) but (s− u)r+1 -
φ(s). Then there exists a polynomialq such thatφ(s) = (s− u)rq(s) and(s− u) - q(s). Now

(s− u)rq(s) = φ(s) = f(x0 − bs, y0 + as)

= f(x0 − bv + bv − bs, y0 + av − av + as)

= f(x1 + bv − bs, y1 − av + as) using (3.3)

= f(x1 − b(s− v), y1 + a(s− v)).

Settingt = s− v and substituting in the above we obtain

(t− (u− v))rq(t+ v) = f(x1 − bt, y1 + at)

= φ′(t).

That is, if(s−u)r|φ(s) then(t− (u− v))r|φ′(t). Appealing to the symmetry of the situation the
converse of the last statement also holds, so in fact(s−u)r|φ(s) if and only if (t−(u−v))r|φ′(t).
Therefore the intersection number ofq = Lp(u) calculated usingφ is equal to the intersection
number ofLp′(u− v) calculated usingφ′. Now the point

Lp′(u− v) = (x1 − b(u− v), y1 + a(u− v))

= (x0 − bu, y0 + au) using (3.3)

= Lp(u) = q.

Thusq is the point ofl corresponding to the zerot = (u − v) of φ′(t) and from the above we
obtain the same intersection number whichever parametric form we use.

Next we consider the effect of changinga andb. We can replace the parametric formLp(s) =
(x0 − bs, y0 + as) with the parametric formL′p(t) = (x0 − b′s, y0 + a′s) if and only if (−b :
a) = (−b′ : a′). Suppose then thatd ∈ k, d 6= 0, a = da′, b = db′ andL′p(t) is as above. The
intersection polynomial corresponding to the parametric formL′p(t) is

φ′(t) = f(x0 − b′s, y0 + a′s).

Now let q = Lp(u) be a point ofl. Then

q = Lp(u) = (x0 − bu, y0 + au)

= (x0 − db′u, y0 + da′u)

= L′p(du).

AJD September 29, 2003



MAS345 Notes 40

Furthermore if(s− u)r|φ(s) then there is a polynomialq(s) such that

(s− u)rq(s) = φ(s) = f(x0 − bs, y0 + as)

= f(x0 − db′s, y0 + da′s)

= φ′(ds).

Settingt = ds and substituting in the above we obtain

((t/d)− u)rq(t/d) = φ′(t).

Now, sinced ∈ k, q(t/d) is a polynomial of the same degree asq in k[t] and

((t/d)− u)r =
1

dr
(t− du)r.

It follows, appealing to symmetry again, that(s− u)r|φ(s) if and only if (t− du)r|φ′(t). Hence
the intersection number ofq is the same whether we useφ(s) orφ′(t) to compute it. We conclude
therefore that intersection number is independent of choice of parametric form forl.
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4 Singularities, Multiplicity and Tangents

Example 4.1.The curvey − x2 = 0.

Example 4.2.The curvey2 − x3 − x2 = 0.
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In order to make these ideas precise we first need to look again at polynomial algebra.

Polynomials and Taylor’s theorem

First of all we define derivatives of polynomials, of one variable, algebraically (the definition
involves no limits).

Definition 4.3. Let f = a0 + a1x + · · · anxn be a polynomial ink[x]. Then thederivative of f
with respect tox is

f ′ = a1 + 2a2x+ · · ·+ nanx
n−1.

We can prove all the usual rules for differentiation using this definition and we use the usual
notation for higher derivatives. In particular we have the Taylor expansion for polynomials of
one variable given by the next theorem. In this theorem and in the remainder of the section on
multiplicities we shall assume that iff is a polynomial of degreed in k[x1, . . . , xn] thenk is a
field containingZ or Zp, wherep > d. Otherwisek would be a field containingZp with p ≤ d
and then we should not be able to make statements involving1/d!.

Theorem 4.4. Let f be a polynomial of degreed in k[x] and letu be an element ofk. Then the
Taylor expansionof f is

f(x) = f(u) + (x− u)f ′(u) +
(x− u)2

2!
f ′′(u) + · · ·+ (x− u)d

d!
f (d)(u).

Proof. The polynomialf(x+ u) has degreed and we can writef(x+ u) = a0 + a1x+ · · · anxd,
with ai ∈ k. Therth derivative off(x+ u) with respect tox is then

f (r)(x+ u) = r!ar + (r + 1)!ar+1x+ · · ·+ d!

(d− r)!
adx

d−r.

Settingx = 0 in the above expression we obtainf (r)(u) = r!ar. Therefore

f(x+ u) = f(u) + xf ′(u) +
x2

2!
f ′′(u) + · · ·+ xd

d!
f (d)(u).

Substitution ofx− u for x above gives the required result.

Partial derivatives of polynomials of several variables are defined in the obvious way and we
use the notation

∂f

∂xi
or fxi or fi

for the partial derivative off with respect toxi. Thus iff(x, y) = x8y3 + 3x2y6 + 17x+ y10 + 3
we have

∂f

∂x
(x, y) = 8x7y3 + 6xy6 + 17
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and
∂f

∂y
(x, y) = 3x8y2 + 18x2y5 + 10y9.

We can now state the chain rule.

Theorem 4.5. Let f(x1, . . . , xn) be an element ofk[x1, . . . , xn] and letg1(s), ... ,gn(s) be ele-
ments ofk[s]. Then, differentiatingf(g1(s), . . . , gn(s)) with respect tos, we obtain

f ′(g1(s), . . . , gn(s)) =
n
∑

i=1

fxi(g1(s), . . . , gn(s))g′i(s).

The chain rule is used in the proof of Taylor’s theorem for polynomials of several variables,
which is as follows.

Theorem 4.6.Letf ∈ k[x, y] be a polynomial of degreen and leta, b, x0, y0 ∈ k. Then

f(sa+ x0, sb+ y0) = f(x0, y0)

+ s(a
∂f

∂x
(x0, y0) + b

∂f

∂y
(x0, y0))

...

+
sn

n!

n
∑

j=0

(

n
j

)

an−jbj
∂nf

∂xn−j∂yj
(x0, y0).

Proof.

Letφ(s) = f(sa+x0, sb+y0).Using Taylor’s theorem for polynomials of one variable (Theorem
4.4) we have

φ(s) = φ(0) + sφ′(0) +
s2

2!
φ′′(0) + · · ·+ sn

n!
φ(n)(0).

Using the chain rule

φ(0) = f(x0, y0)

φ′(0) = a
∂f

∂x
(x0, y0) + b

∂f

∂y
(x0, y0)

...

φ(k)(0) =
k
∑

j=0

(

k
j

)

ak−jbj
∂kf

∂xk−j∂yj
(x0, y0).

The result follows.
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Corollary 4.7. Letf ∈ k[x, y] be a polynomial of degreen and letx0, y0 ∈ k. Then

f(x, y) = f(x0, y0)

+

(

(x− x0)
∂f

∂x
(x0, y0) + (y − y0)

∂f

∂y
(x0, y0)

)

...

+
1

n!

n
∑

j=0

(

n
j

)

(x− x0)n−j(y − y0)j
∂nf

∂xn−j∂yj
(x0, y0).

Proof.

Sets = 1, a = x− x0 andb = y − y0 in the Theorem and this follows immediately.

Next we prove a useful result about homogeneous polynomials in 2 variables (an analogue of
Theorem2.16). We say a ratio(a : b) is non–zeroif (a, b) 6= (0, 0).

Lemma 4.8. Letf(x, y) be a homogenous polynomial of degreed ≥ 0 in k[x, y]. Then there are
at mostd non–zero ratios(a : b) such thatf(a, b) = 0. If k = C then

f(x, y) = a0

d
∏

i=1

(bix− aiy),

for someai, bi ∈ C.

Proof. Since the degree off is non–zero we may write

f =
d
∑

j=0

cjx
jyd−j,

wherecj 6= 0, for somej. Now, using the result of one of Exercises 2, given(a, b) we have
f(a, b) = 0 if and only if f(ta, tb) = 0, for all t 6= 0. Hence(a, b) is a zero off if and only if
(c, d) is a zero off , for all (c, d) with (c : d) = (a : b). Hence we need only prove the result for
one representative(a, b) of each non–zero ratio(a : b). Note that any non–zero ratio(a : 0) is
equal to(1 : 0) and that any ratio(a : b) with b 6= 0 is equal to(t : 1), with t = a/b.

Firstly suppose that(1, 0) is not a zero off . Thencd 6= 0 and any ratio which is a zero off
has a representative of the form(t : 1). Thus

f(t, 1) =
d
∑

j=0

cjt
j,

is a polynomial of degreed. From Theorem2.16, there are at mostd zeros off(t, 1) and this
proves the first statement of the lemma. Ifk = C then

f(t, 1) = a0

d
∏

i=1

(t− ai),
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for someai ∈ C. In this case let
t =

x

y
.

Then

f(t, 1) = a0

d
∏

i=1

(

x

y
− ai

)

and so

f(x, y) = ydf(t, 1) = a0

d
∏

i=1

(x− aiy) .

Now suppose that(1, 0) is a zero off . Thencd = 0 so there ise ≥ 1 such that

cd = cd−1 = · · · = cd−e+1 = 0 andcd−e 6= 0.

Thus

f =
d−e
∑

j=0

cjx
jyd−j = ye

d−e
∑

j=0

cjx
jyd−e−j.

Sincecd−e 6= 0 the result now follows from the previous case.

Singular points

Definition 4.9. Let C be an affine curve with polynomialf . A point (x0, y0) of C is called
singular if

fx(x0, y0) = fy(x0, y0) = 0.

Otherwise(x0, y0) is callednon–singular. If all its points are non–singular then the curveC is
callednon–singular.

Example 4.10.Find all singular points of the curve with equationf(x, y) = x3 + y3 − 3xy.
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Example 4.11.Find all singular points of the curve with equation

f(x, y) = x3 + y3 − 2x2 + y2 + x.

(The real curve with this equation is shown in Figure4.4.) We have
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Figure 4.4:The curve with equationx3 + y3 − 2x2 + y2 + x = 0.

fx = 3x2 − 4x+ 1 and fy = 3y2 + 2y.

Hencefy = 0 if and only if y = 0 or y = −2/3.

Case 1,y = 0: In this casef(x, y) = x3 − 2x2 + x = x(x − 1)2 = 0 if and only if x = 0 or
x = 1.

If x = 0 theny = x = 0 and sofx = 1 6= 0. Hence(0, 0) is not

a singular point.

If x = 1 thenfx = 0, so we havef(1, 0) = fx(1, 0) = fy(1, 0) = 0. Hence(1, 0) is a
singularity.

Case 2,y = −2/3: In this casefx = 0 if and only if x = 1 or 1/3. Also

f(x,−2/3) = x3 − 2x2 + x− (2/3)3 + (2/3)2.

As f(1,−2/3) 6= 0 andf(1/3,−2/3) 6= 0 there are no singular points withy-coordinate
−2/3.

The curve has one singular point(1, 0).

Multiplicity

At a singular point the first partial derivatives of the polynomial vanish. What about second
partial derivatives? We single out the degree of the first non–vanishing partial derivative with the
following definition.

Definition 4.12.
LetC be a curve with equationf = 0. A point p = (x0, y0) of C hasmultiplicity r if
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1.
f(x0, y0) = 0,

∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0,

...

∂r−1f

∂xr−1
(x0, y0) =

∂r−1f

∂xr−2∂y
(x0, y0) = . . . =

∂r−1f

∂x∂yr−2
(x0, y0) =

∂r−1f

∂yr−1
(x0, y0) = 0

and

2.
∂rf

∂xr−j∂yj
(x0, y0) 6= 0, for somej with 0 ≤ j ≤ r.

It follows immediately from this definition that a point ofC is singular if and only if it has
multiplicity greater than1.

Definition 4.13.

1. Points of multiplicity 1 are calledsimplepoints.

2. Points of multiplicity 2 are calleddoublepoints.

3. Points of multiplicity 3 are calledtriple points.

4. Points of multiplicityr are calledr–tuple points.

Example 4.14.We shall find the multiplicity of each singular point of the curve with equation

f(x, y) = x3 + y3 − 3xy.

From Example4.10we know that the curve has one singular point(0, 0).
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Example 4.15.We shall find the multiplicity of each singular point of the curve with equation

f(x, y) = x3 + y3 − 2x2 + y2 + x.

From Example4.11we know that the curve has one singular point(1, 0). We have

fxx = 6x− 4, fxy = 0 and fyy = 6y + 2.

As fxx(1, 0) = 2 6= 0 it follows that(1, 0) is a double point.

Tangents

Now letp = (x0, y0) be a point on the curveC with equationf = 0. Supposef has degreed
and, fort = 0, . . . , d, define the polynomialFt in two variablesα andβ as follows.

F0(α, β) = f(x0, y0) and

Ft(α, β) =
t
∑

j=0

(

t
j

)

αt−jβj
∂tf

∂xt−j∂yj
(x0, y0), for t > 0. (4.1)
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ThenFt is either zero or homogeneous of degreet. A line l throughp with direction ratio(a : b)
has parametric form(x0 + as, y0 + bs).

Definition 4.16. Let p = (x0, y0) be a point of multiplicityr onC. The linel with parametric
form (x0 + as, y0 + bs) is called atangent toC atp if

Fr(a, b) = 0.

As Fr is non–zero it is homogeneous of degreer and it follows, from Lemma4.8, that there
are at mostr tangents at a point of multiplicityr.

Example 4.17.Find all tangents to the complex curve with equation

f(x, y) = x3 + y3 − 3xy

at the points(0, 0) and(3/2, 3/2).

From Example4.14we know that the curve has one singular point(0, 0) of multiplicity 2. There-
fore (3/2, 3/2) is a simple point.
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Example 4.18.Find all tangents to the complex curve with equation

f(x, y) = x3 + y3 − 2x2 + y2 + x

at singular points.

From Example4.15the curve has one singularity: the double point(1, 0). As (1, 0) is a point of
multiplicity 2 the tangents must have direction ratios(a : b) which are zeroes of

x2fxx(1, 0) + 2xyfxy(1, 0) + y2fyy(1, 0) = 2x2 + 2y2.

We have2x2 + 2y2 = 0 if and only if (x + iy)(x− iy) = 0 so(a : b) = (i : 1) or (i : −1). The
tangents at(1, 0) are therefore the linesl1 = {(is+ 1, s)|s ∈ k} andl2 = {(is+ 1,−s)|s ∈ k}.

Tangents and Intersection numbers

As before letp = (x0, y0) be a point on the curveC with equationf = 0. A line l throughp
with direction ratio(a : b) has parametric form(x0 + as, y0 + bs). Define

φ(a,b)(s) = f(x0 + as, y0 + bs).

ThenI(p, f, l) is the highest power ofs dividing φ(a,b)(s). That is

I(p, f, l) = m if and only if sm|φ(a,b)(s) and sm+1 - φ(a,b)(s).

From Theorem4.6,

φ(a,b)(s) =
d
∑

t=0

st

t!
Ft(a, b),

whereFt(α, β) is defined in (4.1). If p is a point of multiplicityr then we have

F0(α, β) = · · · = Fr−1(α, β) = 0
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so that in fact

φ(a,b)(s) =
d
∑

t=r

st

t!
Ft(a, b).

Therefore, for all ratios(a : b),
sr|φ(a,b)(s).

That is, for all linesl through a pointp of multiplicity r,

I(p, f, l) ≥ r.

Furthermore, for a given linel with direction ration(a, b),

I(p, f, l) > r ⇐⇒ sr+1|φ(a,b)(s)

⇐⇒ Fr(a, b) = 0.

From Lemma4.8, there are at mostr ratios(a : b) such thatFr(a, b) = 0. There are therefore at
mostr lines through the pointp such thatI(p, f, l) > r: each such line has direction ratio(a : b)
whereFr(a, b) = 0. We have proved the following Theorem.

Theorem 4.19.Let p be andr–tuple point of a curveC. Then a linel is a tangent toC at p if
and only ifI(p, f, l) > r.

Example 4.20.As we saw in Example4.17, the tangents to the curve curve with equation

f(x, y) = x3 + y3 − 3xy

at the point(0, 0) are the linesx = 0 andy = 0 with parametric forms(0, s) and(s, 0), respec-
tively.
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Multiplicity and tangents at the origin

The multiplicity of the point(0, 0) is particularly easy to compute. Iff is a polynomial
then the terms off of least degree are calledlowest order terms of f . Thus the polynomial
x7y4 + 3x6y2 + 17x2y16 + 2xy7 has lowest order terms3x6y2 and 2xy7. We can write any
polynomialf of degreed as

f = G0 +G1 + · · ·+Gd,

whereGk is either zero or homogenous of degreek andGd is non–zero. In this case the sum of
lowest order terms off is Gs, whereGr is the zero polynomial fork = 0, . . . , s − 1 andGs is
not the zero polynomial.

Corollary 4.21. LetC be a curve with equationf = 0 containing the point(0, 0). Then(0, 0)
has multiplicityr onC if and only if the lowest order terms off have degreer. In this case let
Gr be the sum of lowest order terms off . Then a linel through(0, 0) is tangent toC at (0, 0) if
and only ifl has parametric form(as, bs) whereGr(a, b) = 0.

Proof. Write f = G0 + G1 + · · · + Gd, whereGt is either zero or homogenous of degreet and
Gd is non–zero. From Corollary4.7, with (x0, y0) = (0, 0), we see that

Gt(x, y) =
1

t!
Ft(x, y),

whereFt is defined in (4.1). Hence(0, 0) has multiplicityr if and only if

G0 = · · · = Gr−1 = 0 and Gr 6= 0.

This proves the first statement. The second follows similarly.
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Example 4.22.Let C be the curve with polynomialf = (x2 + y2)2 + 3x2y − y3. The point
(0, 0) belongs toC and the sum of lowest order terms off is 3x2y − y3. Therefore(0, 0) has
multiplicity 3. The line with parametric form(as, bs) is tangent toC at (0, 0) if and only if (a, b)
is a zero of3x2y− y3, that is if and only ifb = 0 or 3a2− b2 = 0. Whenb = 0 we have a tangent
l with parametric form(s, 0). When3a2 − b2 = 0 we may assumea = 1 and sob = ±

√
3.

In this case we obtain two tangentsl′ and l′′ with parametric forms(s, s
√

3) and (s,−s
√

3),
respectively.
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5 Projective spaces and projective curves

We shall add new points “at infinity” to the affine plane and discover that by doing so we
obtain a plane in which the geometry is simplified but nonetheless gives insight into the behaviour
of affine curves.

Ratios

A ratio , overk, is ann–tuple(a1 : . . . : an) of elements ofk. Two ratios(a1 : . . . : an) and
(b1 : . . . : bn) are defined to be equal if there exists a non–zero elementλ ∈ k with

a1 = λb1, a2 = λb2, . . . , an = λbn.

Lines in the affine plane

We have used Cartesian coordinates to describe points ofA2(k): a point is represented by an
ordered pair(u, v) of elements ofk. Lines are sets of points satisfying equations of the form

ax+ by + c = 0, where (a, b) 6= (0, 0).

Two points ofA2(k) lie on a unique line. In fact(x0, y0) and(x1, y1) lie on the line with para-
metric form

((x1 − x0)s+ x0, (y1 − y0)s+ y0).

However it is not always the case that two lines meet at a unique point: they may be parallel. In
fact two distinct lines are parallel if and only if their direction ratios are equal. (The direction
ratio of the line above is(−b : a).)

To see this suppose we have two linesl andL with equations

ax+ by + c = 0 and (5.1)

Ax+By + C = 0, (5.2)
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respectively. Assume thata 6= 0. If A = 0 then(−B : A) 6= (−b : a) andL has equation

y = −C/B.

In this case we obtain a unique point of intersection by substitution of this value ofy in the

equation ofl.

We may assume then thata 6= 0 andA 6= 0. Note that in this case

(−b : a) = (−B : A) ⇐⇒ b = λB and a = λA,

for some non–zeroλ ∈ k and the latter holds if and only if

b =
a

A
B ⇐⇒ Ab− aB = 0,

sinceA 6= 0. Multiplying equation (5.1) byA and equation (5.2) by a we find that they coordi-
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nate of any point of intersection must satisfy

(Ab− aB)y + (Ac− aC) = 0.

If Ab − aB 6= 0 then(−b : a) 6= (−B : A) and we obtain a unique point of intersection. If, on

the other handAb− aB = 0, so(−b : a) = (−B : A) then there are two cases to consider. First

suppose thatAc − aC 6= 0. Then there can be no solution, so no point of intersection and the

lines are parallel. Now suppose thatAc− aC = 0. Since botha andA are non–zero we have

c =
a

A
C.

From the above it’s now clear that bothl andL are the same line.

Homogeneous coordinates forA2(k)

To see how to extend the affine plane to a plane in which any two lines do meet at a unique
point we first replace Cartesian coordinates with a new coordinate system.
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Definition 5.1. The point(u, v) of A2(k) hashomogeneous coordinates

(U : V : W ), where W 6= 0 and u =
U

W
, v =

V

W
.

Example 5.2.The coordinates(1 + i : 2 + i : 3) and(3 + i : 5 : 6− 3i) in A2(C).

Extension to points with third coordinate zero

We now extend the plane by allowing points with homogeneous coordinates(U : V : W ),
whereW = 0. We exclude only the ratio(0 : 0 : 0). Thus(1 : 2 : 0) and(0 : 5 : 0) are points of
the extended plane. The definition for spaces of dimensionn other than3 is analogous.

Definition 5.3. Projective n–spaceoverk, denotedPn(k), is the set of non–zero ratios

(a1 : . . . : an+1), where ai ∈ k.

Elements ofPn(k) are calledpoints of Pn(k).

Thus the extended planeP2(k) consists of

1. points(u : v : w) ∈ A2(k), that is those withw 6= 0, and

2. new points(u : v : 0), where(u, v) 6= (0, 0).
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In the projective plane, as in the affine plane(u : v : w) = (λu : λv : λw), for all non–zero
λ ∈ k. Note that, given a fixed non–zero triple(u, v, w) the set

{(λu, λv, λw) : λ ∈ k} = 〈(u, v, w)〉

is a one–dimensional subspace of the vector spacek3. Therefore there is a one to one correspon-
dence between points ofP2(k) and one–dimensional vector subspaces ofk3:

(u : v : w) corresponds to〈(u, v, w)〉 .

A similar statement holds for points ofPn(k), for anyn ≥ 1.

Lines in the projective plane

Suppose thatl is a line in the affine plane with equationax+ by + c = 0. A point (u : v : w)
of A2(k) belongs tol if and only if

a
( u

w

)

+ b
( v

w

)

+ c = 0

that is if and only if
au+ bv + cw = 0.

Therefore(u : v : w) belongs tol if and only if (x, y, z) = (u, v, w) is a solution to the equation

ax+ by + cz = 0.

Note that
au+ bv + cw = 0 ⇐⇒ λau+ λbv + λcw = 0,

so it makes sense to speak of(u : v : w) as a solution ofax+ by + cz = 0.

Definition 5.4. Suppose(A,B,C) 6= (0, 0, 0). Theprojective line with equation

Ax+By + Cz = 0

is the set of points

(u : v : w) ∈ P2(k) such that Au+Bv + Cw = 0.

As in the affine plane, two points determine a line.

Lemma 5.5. Two distinct pointsp andq of P2(k) lie on a unique line.

Proof. The points(a : b : c) and(u : v : w) lie on the line with equation

(bw − cv)x+ (cu− aw)y + (av − bu)z = 0.
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That is, with equation
∣

∣

∣

∣

∣

∣

x y z
a b c
u v w

∣

∣

∣

∣

∣

∣

= 0. (5.3)

The uniqueness part of the proof is left to the exercises.

In contrast to the affine plane, here, in the projective plane two lines determine a unique point:
their point of intersection.

Lemma 5.6. Distinct lines inP2(k) meet at a unique point.

Proof. Suppose we have two lines with equations

Ax+By + Cz = 0 and A′x+B′y + C ′z = 0.

To find their point of intersection, if it exists, we solve these equations simultaneously. As we
have two equations in three unknowns there will be at least one solution. As the two lines are
distinct it follows that

(A : B : C) 6= (A′ : B′ : C ′).

Therefore there is exactly one solution. For details see the exercises.

There are no parallel lines inP2(k)

Parametric form of a projective line

Let l be a line inP2(k) through the points(a : b : c) and(u : v : w). Thenl has equation
given by (5.3) above. A point(x0 : y0 : z0) is a solution to this equation if and only if the
vector(x0, y0, z0) ∈ k3 is a linear combination of the vectors(a, b, c) and(u, v, w): otherwise
the matrix in(5.3) will have non–zero determinant. That is,(x0 : y0 : z0) is a point ofl if and
only if

(x0, y0, z0) = (as+ ut, bs+ vt, cs+ wt), for some s, t ∈ k.

Therefore

l = {(x : y : z) ∈ P2(k)|(x, y, z) = (as+ ut, bs+ vt, cs+ wt), with s, t ∈ k}
= {(as+ ut : bs+ vt : cs+ wt) ∈ P2(k)|s, t ∈ k}. (5.4)

The expression (5.4) is called theparametric form of the linel. As in the affine case we’ll say
thatl has parametric form

(as+ ut : bs+ vt : cs+ wt), for s, t ∈ k

when the meaning is clear.
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Projective curves

Definition 5.7. A linear combination of monomials of degreed ≥ 0, with at least one non–zero
coefficient, is called ahomogeneous polynomial of degreed.

Theorem 5.8. A polynomialf ∈ k[x1, . . . , xn] is homogeneous of degreed if and only if
f(tx1, . . . , txn) = tdf(x1, . . . , xn), for all t ∈ k.

Proof. See solutions to exercises 2.

From the above it follows that iff(x, y, z) is homogeneous of degreed thenf(a, b, c) = 0 if and
only if f(u, v, w) = 0, for all (u, v, w) ∈ k3 such that(a : b : c) = (u : v : w).

Definition 5.9. Let f be a homogeneous polynomial of degreed > 0 in k[x, y, z]. The set

Cf = {(a : b : c) ∈ P2(k) : f(a, b, c) = 0}

is called aprojective curve of degreed in P2(k).

Theorem 5.10.If f is homogeneous andg|f theng is homogeneous.
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Proof. See solutions to exercises 2.

Let f be an irreducible homogeneous polynomial ink[x, y, z]. Then the curveCf is called
an irreducible projective curve. (Compare this with definition2.13.) If Cf is a projective curve
andf has irreducible factorisationf = q1 · · · qn then

Cf = Cq1 ∪ · · · ∪ Cqn

and the projective curvesCqi are called theirreducible componentsof Cf .
Note that a homogeneous polynomial of degree1 defines what we called a line in definition

5.4. That is, as in the affine plane, lines are curves of degree1.

Dehomogenization

Let F be a homogeneous polynomial of degreed in k[x, y, z]. Thedehomogenizationof F ,
with respect toz = 1, is the polynomialf(x, y) = F (x, y, 1). Note thatf is a polynomial of
degree at mostd in k[x, y]. Moreover ifF 6= azd thenf is non–constant and ifz - F thenf has
degreed.

If the dehomogenizationf of the polynomialF is non–constant then we call the affine curve
Cf thedehomogenizationof CF , with respect toz = 1.

Example 5.11.

1. The projective curve with equationy3 − x2z = 0 has dehomogenization the affine curve
with equationy3 − x2 = 0. We can view the real projective curve as a set of lines through
(0, 0) in R3. We obtain the real affine curve by intersecting the projective curve with the
planez = 1: see Figure5.6.

2. The projective curve with polynomialx3 + y3 − 3xyz has dehomogenization the affine
curve with polynomialx3 + y3 − 3xy. The real curves with these equations are shown in
Figure5.7. In the left hand drawing thez axis points straight up out of the page, whilst
thex axis points to the left and they axis points upwards in the plane of the page. The
right hand drawing is first rotated so that thez axis points out to the left and then its tilted
towards you.
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Figure 5.6:The projective curve with equationy3 − x2z = 0 and its dehomogenization with
respect toz = 1.
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Figure 5.7:The projective curve with equationx3 + y3 − 3xyz = 0 and its dehomogenization
with respect toz = 1.
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The only curves which do not have a dehomogenization are those with equationzd = 0. We
call the line

z = 0

the line at infinity (with respect toz = 1). If (u : v : w) is a point ofP2(k) then either

1. w = 0 and it lies on the line at infinity, or

2. w 6= 0 and it’s a point ofA2(k).

That is, the line at infinity consists precisely of all the new points we added toA2(k) to form
P2(k).

Now let CF be a projective curve of degreed with equationF = 0 and letf(x, y) =
F (x, y, 1) be the dehomogenization ofF . Suppose that(u : v : w) is a point ofCF . Then
either

1. w = 0, in which case(u : v : w) lies on both the line at infinity andCF , or

2. w 6= 0, in which case
F (u/w, v/w, 1) = 0,

so
f(u/w, v/w) = 0.

In this case the point(u : v : w) is a point of the affine curveCf .

ThusCF consists of the points ofCf together with the points whereCF intersects the line at
infinity. Furthermore the polynomialF (x, y, 0) is homogeneous of degreed in two variablesx, y
or it is the zero polynomial. IfF (x, y, 0) is not the zero polynomial there are at mostd ratios
(x : y : 0) such thatF (x, y, 0) = 0 (Lemma4.8). Therefore, either

1. F (x, y, 0) is non–zero and the setCF has at mostd points on the line at infinity or

2. F (x, y, 0) = 0 and the line at infinity is contained inCF .
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We also define thedehomogenizationof F andCF with respect tox = 1:

g(y, z) = F (1, y, z) andCg

and with respect toy = 1:
h(x, z) = F (x, 1, z) andCh.

The linesx = 0 andy = 0 are called thelines at infinity with respect tox = 1 andy = 1,
respectively.

Example 5.12.The projective curvey3 − x2z = 0 has dehomogenizationsy3 − z = 0 and
1− x2z = 0 with respect tox = 1 andy = 1 respectively. These dehomogenizations in the case
R = k are shown in Figure5.8.

Homogenization

Let f be a polynomial of degreed in k[x, y]. We form thehomogenizationof f by multi-
plying every term of degreed− k by zk. The resulting polynomialF (x, y, z) is homogeneous of
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(a) Dehomogenization with respect tox = 1
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(b) Dehomogenization with respect toy = 1

Figure 5.8:The real projective curve with equationy3 − x2z = 0

degreed. Formally

F (x, y, z) = zdf
(x

z
,
y

z

)

.

For example consider the polynomialF = x3z − yz3. The dehomogenization ofF is f =

x3 − y. The homogenization off is x3 − yz2 instead ofF .

Caution Dehomogenization is not always the reverse of homogenization.
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Thehomogenizationof the affine curveCf is the projective curveCF .

Example 5.13.The line with equationx+y+ 1 = 0 has homogenization the linex+y+ z = 0.

This line meets the linez = 0 at points(u : v : w) wherew = 0 andu + v = 0. That is at

the unique point(−1 : 1 : 0). Note that the direction ratio of this line is(−1 : 1 : 0).
The lineax + by + c = 0 has homogenization the lineax + by + cz = 0. This line meets

the linez = 0 at points(u : v : w) wherew = 0 andau + bv = 0. That is at the unique point
(−b : a : 0). Note that the direction ratio of this line is(−b : a : 0). All affine lines which are
parallel have the same direction ratio and so meetz = 0 at the same point.

Example 5.14.The homogenization of affine conics.

1. The affine parabola with equationx−y2 = 0 has homogenization with equationxz−y2 =
0. This curve meetsz = 0 wheny2 = 0: at the unique point(1 : 0 : 0).

2. The affine circle with equationx2+y2−1 = 0 has homogenization with equationx2+y2−
z2 = 0. This curve meetsz = 0 wherex2 + y2 = 0: at points(1 : i : 0) and(1 : −i : 0).
The real projective curve does not meetz = 0. (Recall that(0 : 0 : 0) is not a point of
P2(k) so is not a point of intersection.)

3. The affine hyperbola with equationx2 − y2 − 1 = 0 has homogenization with equation
x2 − y2 − z2 = 0. This curve meetsz = 0 wherex2 − y2 = 0: at points(1 : 1 : 0) and
(1 : −1 : 0).

The real curves with these equations are shown in Figures5.9, 5.10and5.11. In fact all these
affine curves may be obtained by dehomogenization, with respect to appropriate planes, from a
single projective quadratic. For more details see the exercises.
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Figure 5.9:The projective curve with equationxz−y2 = 0 and its dehomgenization with respect
to z = 1.
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Figure 5.10:The projective curve with equationx2 + y2 − z2 = 0 and its dehomgenization with
respect toz = 1.
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Figure 5.11:The projective curve with equationx2 − y2 − z2 = 0 and its dehomgenization with
respect toz = 1.

Intersection of line and curve

Let l be a projective line with parametric form(as+ ut : bs+ vt : cs+ wt), for s, t ∈ k and
let C = Cf be the projective curve with equationf = 0. A point p ∈ P2(k) lies onl andC if
and only ifp = (as0 + ut0 : bs0 + vt0 : cs0 + wt0), for somes0, t0 ∈ k and

f(as0 + ut0, bs0 + vt0, cs0 + wt0) = 0.

This leads to the following definition.

Definition 5.15. We call the polynomial

φ(s, t) = f(as+ ut, bs+ vt, cs+ wt)

an intersection polynomial of l andC. If p = (as0 + ut0 : bs0 + vt0 : cs0 + wt0) ∈ l the
intersection numberI(p, f, l) ofC andl atp is the largest integerr such that(t0s−s0t)

r|φ(s, t).

It can be shown that, as in the affine case, intersection number is independant of choice of para-
metric form forl.
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Note that ifp = (a : b : c) ∈ P2(k) then eithera 6= 0, b 6= 0 or c 6= 0. That is we can rewrite

the homogeneous coordinates ofp as either(1 : b′ : c′) or (a′ : 1 : c′) or (a′ : b′ : 1). Hencep

becomes a point of the affine plane obtained by dehomogenizing with respect to at least one of

x = 1, y = 1 or z = 1.
The following lemma shows that we can always reduce calculation of intersection number on

a projective line to calculation of intersection number on an affine line.

Lemma 5.16. Given a projective curveCF and projective lineL let Cf and l be the dehomog-
enization ofCF andL, respectively, with respect toz = 1. Let p = (u : v : 1) ∈ A2(k).
Then

I(p, f, l) = I(p, F, L).

Similar statements hold for dehomogenization with respect tox = 1 or y = 1 instead ofz = 1.

A field which contains a copy ofZp, for some primep, is said to havecharacteristic p. A field
containingZ is said to havecharacteristic∞. If you don’t like finite fields just assumek = C
in the following Lemma.
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Lemma 5.17. LetC be a projective curve of degreed in P2(k), with equationF = 0, wherek
is an algebraically closed field of characteristic greater thand. Let l be a line such thatl * C.
Then

∑

p∈l∩C

I(p, F, l) = d.

Proof. If l * C thenφ(s, t) is not the zero polynomial and so is homogeneous of degreed. Hence
the result follows from the proof of Lemma4.8and the remark following Theorem2.16.

Multiplicity

Definition 5.18. Let p be a point of a projective curveC with equationf = 0. We say thatp has
multiplicity r (onC) if

1. for all non–negativei, j, k such thati+ j + k = r − 1

∂f

∂xiyjzk
(a, b, c) = 0

and

2. for at least one triple of non–negative integersi, j, k with i+ j + k = r

∂f

∂xiyjzk
(a, b, c) 6= 0.

The termssingular, non–singular, simple, double, triple andr–tuple are defined as in the
affine case (see Definition4.13).

Example 5.19.LetC be the projective curve with equationx3 − yz2 = 0. Find the multiplicity
of all singular points ofC.
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Tangents to projective curves could be defined, as for affine curves, by reference to partial
derivatives. However the notation becomes even more cumbersome in this case and it is easier
to make the following equivalent definition.

Definition 5.20. Let p be anr–tuple point of a projective curveC with polynomialf . A line l
throughp is calledtangent toC atp if I(p, f, l) > r.

It’s often easiest to find multiplicity and tangents to points of projective curves by dehomog-
enizing and using the following theorem, rather than working in the projective plane with the
above definitions.

Theorem 5.21.LetCF be a projective curve with equationF = 0, letf be the dehomogenization
of F (with respect toz = 1) and letCf be the affine curve with equationf = 0. Suppose that
p = (u : v : 1) is a point ofP2(k). Thenp has multiplicityr on CF if and only if p has
multiplicity r onCf . Furthermore, the projective lineL is tangent toCF at p if and only if the
affine linel is tangent toCf at p, wherel is the dehomogenization ofL. Similar statements hold
for dehomogenization with respect tox = 1 or y = 1.

Before proving the theorem we’ll look at some examples.

Example 5.22.LetC be the curve with equationx3 − yz2 = 0, as in the previous example.
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Example 5.23.Find the tangents to the curvex3−yz2 = 0 at the points(1 : 0 : 0) and(0 : 0 : 1).

Example 5.24.Find all singular points of the curvex3 + y3 − 3xyz = 0. Find the multiplicity
of each singular point and its tangents.
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In some cases we may find it easier to calculate tangents directly using the following corollary
to Theorem5.21, rather than dehomogenizing.

Corollary 5.25. A line l is tangent to a non–singular pointp = (a : b : c) of a projective curve
CF if and only ifl has equation

xFx(a, b, c) + yFy(a, b, c) + zFz(a, b, c) = 0.

The proof of this lemma is left to the exercises.

Example 5.26.Find the tangent toCF at (3 : 3 : 2), whereF = x3 + y3 − 3xyz.
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Proof of Theorem5.21

First we consider partial derivatives of homgeneous polynomials and establish a relationship
between the partial derivatives of a polynomial in3 variables and its dehomogenization.

Lemma 5.27.LetF (x, y, z) be a homgeneous polynomial of degreed and letf be the dehomog-
enization off with respect toz = 1. Then

1. Fx is either zero or homogeneous of degreed− 1 and

2. Fx(x, y, 1) = fx(x, y).

Similar statements hold fory or z in place ofx.

Proof. Let

F (x, y, z) =
∑

ai,j,kx
iyjzk.

Then

Fx(x, y, z) =
∑

iai,j,kx
i−1yjzk.
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Each of these terms is either zero (ifi = 0) or of degreed− 1.

e.g.x2yz + xy2z + xz3 + y2z2

f(x, y) =
∑

ai,j,kx
iyj,

so

fx(x, y) =
∑

iai,j,kx
i−1yj = Fx(x, y, 1).

We have immediately the following corollary.

Corollary 5.28.

1. Fxiyjzk is either zero or homogeneous of degreed− (i+ j + k) and

2. Fxiyj(x, y, 1) = fxiyj(x, y).

To prove Theorem5.21we need one more result.

Theorem 5.29 (Euler’s Theorem).LetF (x, y, z) be a homogeneous polynomial of degreem.
Then

mF (x, y, z) = xFx(x, y, z) + yFy(x, y, z) + zFz(x, y, z).

Proof. We havetmF (x, y, z) = F (tx, ty, tz). Differentiating with respect tot we obtain

mtm−1F (x, y, z) = xFx(tx, ty, tz) + yFy(tx, ty, tz) + zFz(tx, ty, tz).
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The result follows on settingt = 1.

Proof of Theorem5.21. We shall prove here thatp = (u : v : 1) is a singular point ofCF if
and only if it is a singular point ofCf . The full statement follows from this using an obvious
induction and Corollary5.28: see the exercises. By definitionp is a singular point ofCF if and
only if

Fx(u, v, 1) = Fy(u, v, 1) = Fy(u, v, 1) = 0

⇐⇒ F (u, v, 1) = Fx(u, v, 1) = Fy(u, v, 1) = 0 (using Euler’s Theorem)

⇐⇒ f(u, v) = fx(u, v) = fy(u, v) = 0 (using Lemma5.27)

⇐⇒ p is a singular point ofCf .

The statement concerning tangents follows from Lemma5.16and Theorem4.19.

Asymptotes

Definition 5.30. Let Cf be an affine curve and letF be the homogenization off . Let L be a
projective line tangent toCF at some pointp on the linez = 0. If L is not itself the linez = 0
then the dehomogenizationl of L is called anasymptotetoCf .

Example 5.32.Let f = x3 − y and soF = x3 − yz2.

There is only one point of intersection ofCF with z = 0 namely(0 : 1 : 0). We have

Fx = 3x2, Fy = z2 andFz = 2yz. AsFx = Fy = 0 impliesx = z = 0 there is only one possible

singular point, namely(0 : 1 : 0). AsF (0, 1, 0)x = Fy(0, 1, 0) = Fz(0, 1, 0) = 0 it follows that

(0 : 1 : 0) is a singular point ofCF . As Fzz = 2y we haveFzz(0, 1, 0) 6= 0 so (0 : 1 : 0) is
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a double point. Note that since the only singularity ofCF lies onz = 0 the affine curveCf is

non–singular.

To find the equation of the tangent toCF at (0 : 1 : 0) we dehomomogenize to obtain an

affine view of (0 : 1 : 0). DehomogenizingF with respect toy = 1 gives the polynomial

g(x, z) = x3 − z2. The homogeneous coordinates(0 : 1 : 0) correspond to the affine point.

Note that(0 : 1 : 0) is the unique singular point ofCF whilst, from Corollary4.21, we see that

(0, 0) is a double point ofCg, verifying Theorem5.21. The tangent toCg at (0, 0) is the line

with parametric form(s, 0), that isz = 0 (repeated twice). The homogenization of the affine line

z = 0 is the projective linez = 0. Thereforez = 0 is the tangent toCF at (0 : 1 : 0). The curve

Cf has no asymptote.

Note that we now have two different affine curves,Cf andCg corresponding to the projective
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curveCF . We shall now find the asymptotes ofCg. AsCg is obtained by dehomogenization with

respect toy = 1 the corresponding line at infinity isy = 0. The curveCF meets the liney = 0

at (0 : 0 : 1), which is a non-singular point of the curve. We have

Fx(0, 0, 1) = 0, Fy(0, 0, 1) = 1 andFz(0, 0, 1) = 0.

Hence the tangent toCF at (0 : 0 : 1) has equationy = 0 (Theorem5.25). Again the affine curve

Cg has no asymptote.

Finally we dehomogenizeF with respect tox = 1. This gives the polynomialh(y, z) =

1 − yz2. This time the line at infinity isx = 0. The curveCF meetsx = 0 at points(0 : y : z)

whereyz2 = 0, that is at points(0 : 0 : 1) and(0 : 1 : 0). The first of these is non-singular with

tangenty = 0 as we have determined above. The tangenty = 0 dehomogenized with respect to
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Figure 5.12: The real curve with equationx3 − y = 0

x = 1 becomes the affine line with equationy = 0, which is therefore an asymptote toCh. The

second point,(0 : 1 : 0), is a double point ofCF with tangentz = 0. Again the tangentz = 0

dehomogenized with respect tox = 1 becomes the affine line with equationz = 0, which is also

an asymptote toCh. Hence the curveCh has two asymptotes.
We plot the real affine curvesCf , Cg andCh in figures5.12, 5.13and5.14below.
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Figure 5.13: The real curve with equationx3 − z2 = 0
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Figure 5.14: The real curve with equation1− yz2 = 0 and its asymptotesy = 0 andz = 0.
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6 Bézout’s Theorem

We shall not prove the following two theorems. Proofs can be found in any of the recom-
mended texts.

Theorem 6.1. If C andD are projective curves thenC andD meet in at least one point.

Recall that two curvesC andD are said to have a common component if there is a curveE
such thatE ⊆ C andE ⊆ D. From the Nullstellensatz it follows that ifE is irreducible then the
polynomial ofE divides that ofC.

Theorem 6.2 (Weak form of B́ezout’s Theorem). Let C andD be two projective curves of
degreesm andn, respectively. IfC andD have no common component then their intersection
C ∩D contains at mostmn points.

Corollary 6.3. 1. A non–singular projective curve is irreducible.

2. An irreducible projective curve has finitely many singular points.

Proof.

AJD September 29, 2003



MAS345 Notes 83

AJD September 29, 2003



MAS345 Notes 84

7 Inflexions

Definition 7.1. A point p of a projective curveCF is called aninflexion if

1. p is non–singular and

2. the tangentl toC atp satisfiesI(p, F, l) ≥ 3.

Example 7.2.Let F be the polynomialy3 − xz2 andC the curve with polynomialF .

We shall give a characterisation of inflexions in terms of second partial derivatives.

Definition 7.3. Let F be a non–constant homogeneous polynomial. TheHessianof F is

HF =

∣

∣

∣

∣

∣

∣

∣

Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz

∣

∣

∣

∣

∣

∣

∣

.

Note that ifF has degreed ≥ 2 thenHF is a homogeneous polynomial of degree3(d − 2).
Next we prove a preliminary lemma.

Lemma 7.4. SupposeF has degreed ≥ 1. Then

z2HF = (d− 1)2

∣

∣

∣

∣

∣

∣

∣

Fxx Fxy Fx

Fyx Fyy Fy

Fx Fy
(

d
d−1

)

F

∣

∣

∣

∣

∣

∣

∣

.
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Proof. Multiply row 3 of the matrix in the definition ofHF by z. Then multiply column 3 byz.
The result is

z2HF =

∣

∣

∣

∣

∣

∣

∣

Fxx Fxy zFxy

Fyx Fyy zFyz

zFzx zFzy z2Fzz

∣

∣

∣

∣

∣

∣

∣

.

Now addx · (row 1) + y · (row 2) to row 3. Euler’s Theorem for the degreed− 1 polynomialFx
is

(d− 1)Fx = xFxx + yFyx + zFzx,

so we obtain

z2HF =

∣

∣

∣

∣

∣

∣

∣

Fxx Fxy zFxy

Fyx Fyy zFyz

(d− 1)Fx (d− 1)Fy z(d− 1)Fz

∣

∣

∣

∣

∣

∣

∣

.

Addingx · (column 1) + y · (column 2) to column 3, and using Euler’s theorem again, gives the
required result.

Theorem 7.5. Let F have degree at least2. A pointp = (u : v : w) of the curveCF is an
inflexion if and only if

1. p is non–singular and

2. HF (u, v, w) = 0.

Proof. Assume thatp has coordinates(u : v : 1). (The other cases follow using a similar
argument.) Definef(x, y) = F (x, y, 1) and letq = (u, v), soq ∈ Cf . Then from Theorem5.21
and Lemma5.16it follows thatp is an inflexion ofCF if and only if q is a non–singular point of
Cf and the tangentl to Cf at q satisfiesI(q, f, l) ≥ 3. It therefore suffices to show that, givenq
is non–singular, thenI(q, f, l) ≥ 3 if and only ifHF (u, v, 1) = 0.

Write fx = fx(u, v) andfy = fy(u, v) and similarly for higher order derivatives. Then, using
Definition 4.16, the tangentl toCf at q is the line with parametric form(as + u, bs+ v), s ∈ k,
where

afx + bfy = 0.

This has solutiona = −fy andb = fx. Seta = −fy andb = fx. Now I(q, f, l) is the largest
integerr such thatsr|f(as+ u, bs+ v) and

f(as+ u, bs+ v) = f(u, v)

+ s(afx + bfy)

+
s2

2!
(a2fxx + 2abfxy + b2fyy)+s

3R(s),

whereR(s) is a polynomial. Asq ∈ Cf sof(u, v) = 0 and we have

f(as+ u, bs+ v) =
s2

2!
(a2fxx + 2abfxy + b2fyy) + s3R(s).
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Thus
I(q, f, l) ≥ 3 if and only if a2fxx + 2abfxy + b2fyy = 0. (7.1)

As p ∈ CF we have, using Lemma7.4

HF (u, v, 1) = (d− 1)2

∣

∣

∣

∣

∣

∣

∣

Fxx Fxy Fx

Fyx Fyy Fy

Fx Fy 0

∣

∣

∣

∣

∣

∣

∣

.

FurthermoreFx(u, v, 1) = fx(u, v) and similarly for all the other partial derivatives (of first and
higher orders). Thus

HF (u, v, 1) = (d− 1)2

∣

∣

∣

∣

∣

∣

∣

fxx fxy fx

fyx fyy fy

fx fy 0

∣

∣

∣

∣

∣

∣

∣

= (d− 1)2[−f 2
xfyy + 2fxfyfxy − f 2

y fxx]

= (d− 1)2[−b2fyy − 2abfxy − a2fxx].

Hence
HF (u, v, 1) = 0 if and only if (7.1) holds.

Thusp is an inflexion if and only ifq is non–singular andI(q, f, l) ≥ 3 which is true if and only
if p is non–singular andHF (u, v, 1) = 0. This completes the proof of the Theorem.

Example 7.6.Find all the inflexions ofCF , whereF = x3 + y3 − 3xyz.
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8 Cubics and the group law

A curve of degree 3 is acubic. It can be shown that (whenk is algebraically closed)

a non–singular cubic inP2(k) has exactly nine inflexions.

We shall assume througout this section that all curves are defined over an algebraically closed
field.

Theorem 8.1.LetC be a non–singular projective cubic with equationF = 0 and letl be a line.
Then the intersection ofl andC consists of either

1. 3 distinct pointsp1, p2 andp3 with I(pi, F, l) = 1, for i = 1, 2, 3, so thatl is not tangent to
C at pi; or

2. 2 distinct pointsp1 andp2 with I(p1, F, l) = 1 andI(p2, F, l) = 2 so thatl is tangent toC
at p2 but not atp1; or

3. 1 pointp with I(p, F, l) = 3 sol is tangent toC at p andp is an inflexion.

Proof. This follows from Lemma5.17.

The group law on the cubic

Here we shall denote the line through pointsA andB by AB. Let C be a non–singular
projective cubic and letO be an inflexion ofC.

Definition 8.2. GivenX ∈ C letX denote the third point of intersection ofOX with C (where
intersections are counted according to intersection number).
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In particular we interpret this definition to mean thatO = O, asO is an inflexion. Next we define
an operation of addition on the points ofC.

Definition 8.3. Given pointsP,Q ∈ C we define a pointP + Q of C as follows. First letX be
the third point of intersection ofPQ with C. Now setP +Q = X.

Theorem 8.4. The set of points ofC with the operation of addition defined above forms an
Abelian group.

Proof. It follows from Theorem8.1 thatP + Q is a unique point ofC. Therefore the given
operation of addition is a binary operation on the set of points ofC. We need to check that it has
an identity, that there are inverses, that it is associative and that it is commutative.
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Identity: The pointO is the identity element. To see this suppose thatP is a point ofC. We
must show thatP +O = P = O + P . LetX be the third point of intersection ofPO and
C. Now we have the linePO passing throughO, P andX.

By definitionP+O = X, the third point of intersection ofOX with C. That isP+O = P .
SimilarlyO + P = P , soO is the identity as claimed.

Inverse: Let P be a point ofC. ThenP is the third point of intersection ofOP andC.

ThusPP passes throughO, P andP . It follows thatP + P = O = O. Similarly
P + P = O. Hence the inverse ofP is P .
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Associative: This is the only group axiom that is non–trivial to check and we omit it.

Commutative: The linePQ is the same as the lineQP soP +Q = Q+ P .

Example 8.5.Consider the curveCF , whereF = x3 + y3 − z3. We have

Fx = 3x2, Fy = 3y2 andFz = −3z2.

As Fx = Fy = Fz = 0 impliesx = y = z = 0 the curve is non–singular. We have

Fxx = 6x, Fyy = 6y, Fzz = −6z andFxy = Fxz = Fyz = 0.

Hence

HF =

∣

∣

∣

∣

∣

∣

6x 0 0
0 6y 0
0 0 −6z

∣

∣

∣

∣

∣

∣

= −63xyz.

ThereforeHF = 0 if and only if x = 0, y = 0 or z = 0.

x = 0: In this caseF (0, y, z) = y3 − z3 = 0 and we may assumey = 1 (asy = 0 implies
x = y = z = 0). We findz by solving1 − z3 = 0, to givez = 1, ω or ω2, whereω3 = 1
andω 6= 1. The points of inflexion withx = 0 are therefore

(0 : 1 : 1), (0 : 1 : ω) and(0 : 1 : ω2).

y = 0: In this caseF (x, 0, z) = x3 − z3 = 0 and we may assumez = 1 (asz = 0 implies
x = y = z = 0). We findx by solvingx3 − 1 = 0, to givex = 1, ω or ω2, whereω3 = 1
andω 6= 1. The points of inflexion withy = 0 are therefore

(1 : 0 : 1), (1 : 0 : ω) and(1 : 0 : ω2).

z = 0: In this caseF (x, y, 0) = x3 + y3 = 0 and we may assumex = 1 (asx = 0 implies
x = y = z = 0). We findy by solving1 + y3 = 0, to givey = −1, −ω or −ω2, where
ω3 = 1 andω 6= 1. The points of inflexion withz = 0 are therefore

(1 : −1 : 0), (1 : −ω : 0) and(1 : −ω2 : 0).

There are a total of nine inflexions as expected. The inflexions on the real curve at(0 : 1 : 1)
and(1 : 0 : 1) can be shown by dehomogenizing with respect toz = 1. This gives the affine
curvex3 + y3 − 1 = 0 with inflexions at(0, 1) and(1, 0) (see Figure8.15(a)). The inflexions
at (0 : 1 : 1) and(−1 : 1 : 0) = (1 : −1 : 0) can be seen by dehomogenizing with respect to
y = 1. This gives the affine curvex3 +1−z3 = 0 with inflexions at(0, 1) and(−1, 0) see Figure
8.15(b)).

Now consider the group law onC with base pointO = (0 : 1 : 1). Let P = (1 : 0 : ω) and
Q = (1 : −ω2 : 0). We shall computeP +Q. The linePQ has parametric form(s+ t : −ω2t :
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(a) The curvex3 + y3 − 1 = 0
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(b) The curvex3 + 1− z3 = 0

Figure 8.15:Dehomogenizations of the real curvex3 + y3 − z3 = 0

ωs), for s, t ∈ k. To find the third point of intersection ofPQ andC we substitute these values
into the equation ofC to obtain

φ(s, t) = (s+ t)3 + (−ω2t)3 − (ωs)3 = 3s2t+ 3st2 = 3st(s+ t).

Thusφ(s, t) = 0 if s = 0, t = 0 or s+ t = 0. The zeross = 0 andt = 0 correspond toP andQ
so the third point of intersectionX, corresponding tos+t = 0 isX = (0 : ω2 : ω) = (0 : 1 : ω2).
To computeP +Q we must findX. AsO andX both havex–coordinate0 it follows that the line
OX is x = 0. Substitutingx = 0 in F we see that this line meetsC atO,X andX = (0 : 1 : ω).
Hence

P +Q = (0 : 1 : ω).
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