
Polynomials

Definition 1.1. Let k be a field. A polynomial f over k in variables x1, . . . , xn
is a sum

f = f(x1, . . . , xn) =
∑

α1,...,αn

aα1,...,αnx
α1
1 · · ·xαnn ,

where

1. α1, . . . , αn runs over all n–tuples of non–negative integers,

2. aα1,...,αn ∈ k, for all α1, . . . , αn and

3. aα1,...,αn = 0, for all but finitely many α1, . . . , αn.

When convient we write α for the n–tuple α1, . . . , αn and aαxα for
aα1,...,αnx

α1
1 · · ·xαnn .

Two polynomials
∑

α aαxα and
∑

α bαxα are equal if and only if aα = bα, for all
α.
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Writing polynomials

When writing polynomials we use the following conventions.

1. We do not write down aα1,...,αnx
α1
1 · · ·xαnn for any α such that aα = 0. We

call the polynomial with aα = 0, for all α, the zero polynomial and write it as
0.

2. We omit xαii from xα1
1 · · ·xαnn if αi = 0. In particular we write a instead of

ax0
1 · · ·x0

n. Thus 2x2
1x

0
2x

3
3 is written as 2x2

1x
3
3 and 3x0

1x
0
2x

4
3 as 3x4

3.
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Polynomial terminology

Definition 1.3. Let

f(x1, . . . , xn) =
∑

α1,...,αn

aα1,...,αnx
α1
1 · · ·xαnn ,

be a polynomial over k.

1. aα1,...,αn is called the coefficient of the monomial xα1
1 · · ·xαnn .

2. If aα 6= 0 we call aαxα a term of f .

3. The degree of the term aαxα is the degree of the monomial xα. The degree
of xi in the term aαxα is the degree of xi in xα.

4. If f is not the zero polynomial then the degree of f is the maximum of the
degrees of the terms of f and the degree of xi in f is the maximum of the
degrees of xi in terms of f . If f is the zero polynomial then f has degree
−∞.
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Addition of polynomials
Definition 1.4. Let

f =
∑

α

aαxα and g =
∑

α

bαxα

be polynomials. The sum f + g of f and g is

f + g =
∑

α

(aα + bα)xα.

It is easy to check that, with this definition of addition, k[x1, . . . , xn] is a vector
space over k with the required basis.

Example 1.5.
Let f = x2

1 + x2
2 + x2

1x2 and g = 2x2
1 + x1x2 − 3x2

2 + 1 then

f + g = 3x2
1 − 2x2

2 + x2
1x2 + x1x2 + 1.
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Multiplication of polynomialsDefinition 1.6. Let

f =
∑

α

aαxα and g =
∑

α

bαxα

be polynomials. The product fg of f and g is

fg =
∑

γ

cγxγ,

where

cγ =
∑

α+β=γ

aαbβ.

Example 1.7.
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Let f = x2 + y2 + 1 and g = xy2 + x3 + 2 then

fg = x3y2 + x5 + 2x2 + xy4 + x3y2 + 2y2 + xy2 + x3 + 2

= 2x3y2 + x5 + 2x2 + xy4 + 2y2 + xy2 + x3 + 2.
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Affine space

Definition 2.1.

Let k be a field and let n be a positive integer.

Affine n–space over k is the set

An(k) = {(a1, . . . , an) : ai ∈ k, for i = 1, . . . , n}.

We call the elements (a1, . . . , an) points of An(k).
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Affine space
Definition 2.1.

Let k be a field and let n be a positive integer.

Affine n–space over k is the set

An(k) = {(a1, . . . , an) : ai ∈ k, for i = 1, . . . , n}.

We call the elements (a1, . . . , an) points of An(k).

Example 2.2.

1. The affine line A1(k) when k is R, Q, C and GF (p).

2. The affine plane A2(k), for the same fields.

3. A3(k), for these fields.
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Affine curves

Definition 2.3.

Let f be a non–constant polynomial of degree d in variables x, y over the field
k.

The set of points
Cf = {(a, b) ∈ A2(k) : f(a, b) = 0}

is called a curve over k with equation f = 0.
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Affine curves

Definition 2.3.

Let f be a non–constant polynomial of degree d in variables x, y over the field
k.

The set of points
Cf = {(a, b) ∈ A2(k) : f(a, b) = 0}

is called a curve over k with equation f = 0.

Cf has degree d and is a curve in A2(k).
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Affine curves

Definition 2.3.

Let f be a non–constant polynomial of degree d in variables x, y over the field
k.

The set of points
Cf = {(a, b) ∈ A2(k) : f(a, b) = 0}

is called a curve over k with equation f = 0.

Cf has degree d and is a curve in A2(k).

Cf is defined by f and has polynomial f .
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Affine curves

Definition 2.3.

Let f be a non–constant polynomial of degree d in variables x, y over the field
k.

The set of points
Cf = {(a, b) ∈ A2(k) : f(a, b) = 0}

is called a curve over k with equation f = 0.

Cf has degree d and is a curve in A2(k).

Cf is defined by f and has polynomial f .

A curve may have many different equations.
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Some well known curves

Example 2.4.

1. Examples of introduction and Exercises 1, Drawing curves.
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Some well known curves

Example 2.4.

1. Examples of introduction and Exercises 1, Drawing curves.

2. A curve of degree 1 is called a line.
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Example 2.4.

1. Examples of introduction and Exercises 1, Drawing curves.

2. A curve of degree 1 is called a line.

3. A curve of degree 2 is called a conic.
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Some well known curves

Example 2.4.

1. Examples of introduction and Exercises 1, Drawing curves.

2. A curve of degree 1 is called a line.

3. A curve of degree 2 is called a conic.

4. Curves of degree 3, 4 and 5 are called a cubic, quartic and quintic,
respectively.
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Some well known curves

Example 2.4.

1. Examples of introduction and Exercises 1, Drawing curves.

2. A curve of degree 1 is called a line.

3. A curve of degree 2 is called a conic.

4. Curves of degree 3, 4 and 5 are called a cubic, quartic and quintic, respectively.

5. Consider the curves Cf and Cg, where f = x2 − y and g = x4 − 2x2y + y2.
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Polynomials again

Lemma 2.5.

Let f and g be elements of k[x1, . . . , xn].

Then

1. degree(fg) = degree(f) + degree(g) and

2. degree(f + g) ≤ max{degree(f),degree(g)}
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Polynomials again

Lemma 2.5.

Let f and g be elements of k[x1, . . . , xn].

Then

1. degree(fg) = degree(f) + degree(g) and

2. degree(f + g) ≤ max{degree(f),degree(g)}

Furthermore, for 1 ≤ i ≤ n,

3. the degree of xi in fg is equal to
[degree of xi in f ] + [degree of xi in g] and

4. the degree of xi in f + g
≤ max{degree of xi in f , degree of xi in g}.
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Reducible and irreducible polynomials

Definition 2.6.

Let f and g be elements of k[x1, . . . , xn].

We say that

g divides f or

g is a factor of f ,

written g|f ,

if there exists an element h ∈ k[x1, . . . , xn] such that f = gh.
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Reducible and irreducible polynomials
Definition 2.6.

Let f and g be elements of k[x1, . . . , xn].

We say that

g divides f or

g is a factor of f ,

written g|f ,

if there exists an element h ∈ k[x1, . . . , xn] such that f = gh.

Definition 2.7.

A non–constant polynomial f over a field k is reducible if there exist non–
constant polynomials g and h, over k, such that f = gh.

A non–constant polynomial is irreducible if it is not reducible.
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Examples: reducible and irreducible polynomials

Example 2.8.

1. The polynomial xn is reducible if n > 0 and irreducible if n = 0.
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Examples: reducible and irreducible polynomials

Example 2.8.

1. The polynomial xn is reducible if n > 0 and irreducible if n = 0.

2. The polynomial x2 − y2 is reducible as x2 − y2 = (x+ y)(x− y).

– Typeset by FoilTEX – 12



Examples: reducible and irreducible polynomials

Example 2.8.

1. The polynomial xn is reducible if n > 0 and irreducible if n = 0.

2. The polynomial x2 − y2 is reducible as x2 − y2 = (x+ y)(x− y).

3. Let f = x2yz − xz2 − xy3 + y2z.
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Examples: reducible and irreducible polynomials

Example 2.8.

1. The polynomial xn is reducible if n > 0 and irreducible if n = 0.

2. The polynomial x2 − y2 is reducible as x2 − y2 = (x+ y)(x− y).

3. Let f = x2yz − xz2 − xy3 + y2z.
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Examples: reducible and irreducible polynomials

Example 2.8.

1. The polynomial xn is reducible if n > 0 and irreducible if n = 0.

2. The polynomial x2 − y2 is reducible as x2 − y2 = (x+ y)(x− y).

3. Let f = x2yz − xz2 − xy3 + y2z.

4. All polynomials of degree 1 are irreducible.

5. The polynomial f = x2 − y is irreducible.
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Examples: reducible and irreducible polynomials

Example 2.8.

1. The polynomial xn is reducible if n > 0 and irreducible if n = 0.

2. The polynomial x2 − y2 is reducible as x2 − y2 = (x+ y)(x− y).

3. Let f = x2yz − xz2 − xy3 + y2z.

4. All polynomials of degree 1 are irreducible.

5. The polynomial f = x2 − y is irreducible.

6. In contrast to the last example the reducibility of the polynomial f = x2 + y2

depends upon the ground field k.
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Examples: reducible and irreducible polynomials

Example 2.8.

1. The polynomial xn is reducible if n > 0 and irreducible if n = 0.

2. The polynomial x2 − y2 is reducible as x2 − y2 = (x+ y)(x− y).

3. Let f = x2yz − xz2 − xy3 + y2z.

4. All polynomials of degree 1 are irreducible.

5. The polynomial f = x2 − y is irreducible.

6. In contrast to the last example the reducibility of the polynomial f = x2 + y2

depends upon the ground field k.

7. As a final example we show that the polynomial f = x2− y3 is irreducible over
an arbitrary field k.
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Irreducible polynomials

irreducible ⇐⇒ any factor is constant or a constant multiple
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Irreducible polynomials

irreducible ⇐⇒ any factor is constant or a constant multiple

That is,

if f is irreducible and g|f then

either g is a constant

or g = af , for some a ∈ k.
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Irreducible polynomials

irreducible ⇐⇒ any factor is constant or a constant multiple

That is,

if f is irreducible and g|f then

either g is a constant

or g = af , for some a ∈ k.

(In Z the irreducible elements are primes.)
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Irreducible factorisation

Let f be reducible and of degree d.

Write f = gh, where

1 ≤ degree(g) ≤ d− 1 and 1 ≤ degree(h) ≤ d− 1.
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Irreducible factorisation

Let f be reducible and of degree d.

Write f = gh, where

1 ≤ degree(g) ≤ d− 1 and 1 ≤ degree(h) ≤ d− 1.

If either g or h is reducible then we can repeat the process, factorizing into
polynomials of lower degree.
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Irreducible factorisation

Let f be reducible and of degree d.

Write f = gh, where

1 ≤ degree(g) ≤ d− 1 and 1 ≤ degree(h) ≤ d− 1.

If either g or h is reducible then we can repeat the process, factorizing into
polynomials of lower degree.

Eventually we obtain an expression

f = q1 · · · qs,

where qi is an irreducible polynomial.
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Irreducible factorisation

Let f be reducible and of degree d.

Write f = gh, where

1 ≤ degree(g) ≤ d− 1 and 1 ≤ degree(h) ≤ d− 1.

If either g or h is reducible then we can repeat the process, factorizing into
polynomials of lower degree.

Eventually we obtain an expression

f = q1 · · · qs,

where qi is an irreducible polynomial.

A factorization of f into a product of irreducible polynomials is called an
irreducible factorization of f .
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Theorem 2.9.

Let f be a polynomial in k[x1, . . . , xn].

Then f has an irreducible factorization.

This factorization is unique up to the order of the irreducible factors and
multiplication by constants.
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Theorem 2.9.

Let f be a polynomial in k[x1, . . . , xn].

Then f has an irreducible factorization.

This factorization is unique up to the order of the irreducible factors and
multiplication by constants.

Example 2.10.

1. The polynomial x2 − y2 has irrreducible factorisation (x+ y)(x− y).
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Theorem 2.9.

Let f be a polynomial in k[x1, . . . , xn].

Then f has an irreducible factorization.

This factorization is unique up to the order of the irreducible factors and
multiplication by constants.

Example 2.10.

1. The polynomial x2 − y2 has irrreducible factorisation (x+ y)(x− y).

2. Let f = x2yz − xz2 − xy3 + y2z.
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Theorem 2.9.

Let f be a polynomial in k[x1, . . . , xn].

Then f has an irreducible factorization.

This factorization is unique up to the order of the irreducible factors and
multiplication by constants.

Example 2.10.

1. The polynomial x2 − y2 has irrreducible factorisation (x+ y)(x− y).

2. Let f = x2yz − xz2 − xy3 + y2z.

Then f has irreducible factorisation gh, where g = xy − z and h = xz − y2.

– Typeset by FoilTEX – 15



Theorem 2.9.

Let f be a polynomial in k[x1, . . . , xn].

Then f has an irreducible factorization.

This factorization is unique up to the order of the irreducible factors and
multiplication by constants.

Example 2.10.

1. The polynomial x2 − y2 has irrreducible factorisation (x+ y)(x− y).

2. Let f = x2yz − xz2 − xy3 + y2z.

Then f has irreducible factorisation gh, where g = xy − z and h = xz − y2.

This follows from the previous example and the fact (which you should check)
that g and h are irreducible.
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Irreducible curves

Lemma 2.11.

If f, g and h are non-constant polynomials in k[x, y] with f = gh then

Cf = Cg ∪ Ch.
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Irreducible curves

Lemma 2.11.

If f, g and h are non-constant polynomials in k[x, y] with f = gh then

Cf = Cg ∪ Ch.

Example 2.12.

1. The curve with equation
x2 − y2 = 0.
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Irreducible curves
Lemma 2.11.

If f, g and h are non-constant polynomials in k[x, y] with f = gh then

Cf = Cg ∪ Ch.

Example 2.12.

1. The curve with equation
x2 − y2 = 0.

2. The curve with equation

(x2 + (y − 1)2 − 1)(x2 + (y − 2)2 − 4)(x2 + (y − 3)2 − 9) = 0.
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Irreducible components

Definition 2.13.

Let f be an irreducible polynomial in k[x, y].

Then the curve Cf is called an irreducible affine curve.
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Irreducible components

Definition 2.13.

Let f be an irreducible polynomial in k[x, y].

Then the curve Cf is called an irreducible affine curve.

Definition 2.14.

Let f be a reducible polynomial in k[x, y] with irreducible factorization f =
q1 · · · qs.

Then we say that Cf is a reducible curve and has irreducible components
Cq1, . . . , Cqs.
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Note: If Cf has irreducible components

Cq1, . . . , Cqs

then
Cf = Cq1 ∪ · · · ∪ Cqs.

(Lemma 2.11)
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Note: If Cf has irreducible components

Cq1, . . . , Cqs

then
Cf = Cq1 ∪ · · · ∪ Cqs.

(Lemma 2.11)

Therefore every curve is a union of irreducible curves.
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Example 2.15.

1. Lines are irreducible curves.
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Example 2.15.

1. Lines are irreducible curves.

2. The curve with polynomial x2 − y2 has two irreducible components: the lines
x+ y = 0 and x− y = 0.
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Example 2.15.

1. Lines are irreducible curves.

2. The curve with polynomial x2 − y2 has two irreducible components: the lines
x+ y = 0 and x− y = 0.

3. Let f = x5 − x3y − x2y2 + y3.

Cf has irreducible components Cg and Ch.
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An irreducible curve with 2 branches
4. The last example may be misleading as, in A2(R), curves which appear to

have several components may in fact be irreducible. For example the curve
with equation y2 − x(x2 − 1) = 0 is irreducible over R.
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An irreducible curve with an isolated point

5. The curve with equation x3 + x2 + y3 + y2 = 0 in A2(R) behaves even worse,
having an isolated point at the origin even though it is irreducible:
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A curve repeated twice

6. On the other hand curves which, when drawn, look irreducible may not be.

For example let f = x2 − 2xy + y2. Then f = g2, where g = x− y.

The curve Cf has 2 irreducible components both equal to Cg, which is the line
y = x.
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Polynomials of one variable

Theorem 2.16.

Let k be a field and let f ∈ k[t] be a polynomial of degree d.

Then the following hold.

1. If a ∈ k then f(a) = 0 if and only if (t− a)|f .

2. f has at most d zeros.
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Algebraically closed fields

If a field k has the property that every non–constant polynomial f ∈ k[t] has at
least one zero then we say that k is algebraically closed.
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Algebraically closed fields

If a field k has the property that every non–constant polynomial f ∈ k[t] has at
least one zero then we say that k is algebraically closed.

If k is algebraically closed and f is non–constant polynomial of degree d in k[t]
then

f = a0(t− a1) · · · (t− an),

for some ai ∈ k, with a0 6= 0.
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Algebraically closed fields

If a field k has the property that every non–constant polynomial f ∈ k[t] has at
least one zero then we say that k is algebraically closed.

If k is algebraically closed and f is non–constant polynomial of degree d in k[t]
then

f = a0(t− a1) · · · (t− an),

for some ai ∈ k, with a0 6= 0.

This follows from Theorem 2.16 by induction on the degree d of f .
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Algebraically closed fields

If a field k has the property that every non–constant polynomial f ∈ k[t] has at
least one zero then we say that k is algebraically closed.

If k is algebraically closed and f is non–constant polynomial of degree d in k[t]
then

f = a0(t− a1) · · · (t− an),

for some ai ∈ k, with a0 6= 0.

This follows from Theorem 2.16 by induction on the degree d of f .

The ai’s are not necessarily distinct.
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Multiplicity of roots of a polynomial

Collect together all the repeated linear factors and write

f = a0

k
∏

i=1

(t− bi)ri,

with a0 6= 0, bi 6= bj when i 6= j and r1 + · · ·+ rk = d.
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Multiplicity of roots of a polynomial

Collect together all the repeated linear factors and write

f = a0

k
∏

i=1

(t− bi)ri,

with a0 6= 0, bi 6= bj when i 6= j and r1 + · · ·+ rk = d.

The multiplicity of the zero bi is ri.
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Example 2.17.

1. The field C is algebraically closed.
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Example 2.17.

1. The field C is algebraically closed.

2. The field R is not algebraically closed.
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Theorem 2.18.

Let k be an infinite field and let f ∈ k[x1, . . . xn].

If
f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ An(k)

then f is the zero polynomial.
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Hilbert’s Nullstellensatz

Theorem 2.19.

Let k be an algebraically closed field and let f and g be non–constant
polynomials in k[x1, . . . xn].

Suppose that

1. g is irreducible and

2. f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ An(k) such that g(a1, . . . , an) = 0.

Then g|f .
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Implication for curves

Corollary 2.20.

Let g and f be polynomials in k[x, y], where k is an algebraically closed field.

Assume g has irreducible factorization g = q1 · · · qs.

If

1. Cg ⊂ Cf and

2. qi 6= qj, when i 6= j,

then g|f .

In particular if Cg ⊂ Cf and g is irreducible then g|f .
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When k is algebraically closed:

Curves ⇐⇒ Polynomials without repeated factors.
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When k is algebraically closed:

Curves ⇐⇒ Polynomials without repeated factors.

In particular:

if f and g are irreducible polynomials and Cf = Cg then g = af , for some a ∈ k.
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When k is algebraically closed:

Curves ⇐⇒ Polynomials without repeated factors.

In particular:

if f and g are irreducible polynomials and Cf = Cg then g = af , for some a ∈ k.

Drop the requirement that k is algebraically closed and the theorem fails.
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Example 2.21.

Let k = R and consider the curve C with equation x2 + y2 + 1 = 0.
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Example 2.21.

Let k = R and consider the curve C with equation x2 + y2 + 1 = 0.

This curve has no points.
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Example 2.21.

Let k = R and consider the curve C with equation x2 + y2 + 1 = 0.

This curve has no points.

Therefore it is contained in every other curve.
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Example 2.21.

Let k = R and consider the curve C with equation x2 + y2 + 1 = 0.

This curve has no points.

Therefore it is contained in every other curve.

Its equation is irreducible over R.
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Example 2.21.

Let k = R and consider the curve C with equation x2 + y2 + 1 = 0.

This curve has no points.

Therefore it is contained in every other curve.

Its equation is irreducible over R.

However the polynomial f does not divide the polynomial of every other curve:
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Let k = R and consider the curve C with equation x2 + y2 + 1 = 0.

This curve has no points.

Therefore it is contained in every other curve.

Its equation is irreducible over R.

However the polynomial f does not divide the polynomial of every other curve:

in particular it does not divide any linear polynomial.
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Example 2.21.

Let k = R and consider the curve C with equation x2 + y2 + 1 = 0.

This curve has no points.

Therefore it is contained in every other curve.

Its equation is irreducible over R.

However the polynomial f does not divide the polynomial of every other curve:

in particular it does not divide any linear polynomial.

This means Corollary 2.20 does not hold in A2(R).
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Example 2.21.

Let k = R and consider the curve C with equation x2 + y2 + 1 = 0.

This curve has no points.

Therefore it is contained in every other curve.

Its equation is irreducible over R.

However the polynomial f does not divide the polynomial of every other curve:

in particular it does not divide any linear polynomial.

This means Corollary 2.20 does not hold in A2(R).

Note also that the polynomial g = x2 + y2 + 2 defines the same (empty) curve in
A2(R), but that g is not a constant multiple of f .
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Parametric form of a line

Suppose l is a line with equation ax + by + c = 0, where (a, b) 6= (0, 0), and
(x0, y0) a point of l.

Then l is
{(x0 − bs, y0 + as) : s ∈ k}. (3.1)
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Parametric form of a line

Suppose l is a line with equation ax + by + c = 0, where (a, b) 6= (0, 0), and
(x0, y0) a point of l.

Then l is
{(x0 − bs, y0 + as) : s ∈ k}. (3.1)

On the other hand, given a, b, x0, y0 ∈ k with (a, b) 6= (0, 0) set

c = −(ax0 + by0).
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Parametric form of a line

Suppose l is a line with equation ax + by + c = 0, where (a, b) 6= (0, 0), and
(x0, y0) a point of l.

Then l is
{(x0 − bs, y0 + as) : s ∈ k}. (3.1)

On the other hand, given a, b, x0, y0 ∈ k with (a, b) 6= (0, 0) set

c = −(ax0 + by0).

Then (3.1) defines a line, with equation

ax+ by + c = 0,

passing through (x0, y0).
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(3.1) is the parametric form of the line l.

abbreviated to (x0 − bs, y0 + as)
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(3.1) is the parametric form of the line l.

abbreviated to (x0 − bs, y0 + as)

• The parametric form of l depends on the choice of point (x0, y0) ∈ l.
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(3.1) is the parametric form of the line l.

abbreviated to (x0 − bs, y0 + as)

• The parametric form of l depends on the choice of point (x0, y0) ∈ l.

• The ratio (−b : a) is the direction ratio of l.
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(3.1) is the parametric form of the line l.

abbreviated to (x0 − bs, y0 + as)

• The parametric form of l depends on the choice of point (x0, y0) ∈ l.

• The ratio (−b : a) is the direction ratio of l.

Example 3.1. The line l with equation 2x+ 5y + 1 = 0 ...
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Intersection polynomials

Let l contain (x0, y0) and have parametric form (x0 − bs, y0 + as).

Let C be the curve with equation f = 0.

– Typeset by FoilTEX – 34



Intersection polynomials

Let l contain (x0, y0) and have parametric form (x0 − bs, y0 + as).

Let C be the curve with equation f = 0.

A point q ∈ A2(k) lies on l and C if and only if q = (x0− bu, y0 + au), for some
u ∈ k such that

f(x0 − bu, y0 + au) = 0. (3.2)
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Intersection polynomials

Let l contain (x0, y0) and have parametric form (x0 − bs, y0 + as).

Let C be the curve with equation f = 0.

A point q ∈ A2(k) lies on l and C if and only if q = (x0− bu, y0 + au), for some
u ∈ k such that

f(x0 − bu, y0 + au) = 0. (3.2)

Definition 3.2. We call the polynomial

φ(s) = f(x0 − bs, y0 + as)

an intersection polynomial of l and C.
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Intersection polynomials

Let l contain (x0, y0) and have parametric form (x0 − bs, y0 + as).

Let C be the curve with equation f = 0.

A point q ∈ A2(k) lies on l and C if and only if q = (x0− bu, y0 + au), for some
u ∈ k such that

f(x0 − bu, y0 + au) = 0. (3.2)

Definition 3.2. We call the polynomial

φ(s) = f(x0 − bs, y0 + as)

an intersection polynomial of l and C.

φ depends on the choice of parametrisation of l.
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Intersection number

Point of intersection of l and C ⇐⇒ u ∈ k such that φ(u) = 0
(3.2)
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Intersection number

Point of intersection of l and C ⇐⇒ u ∈ k such that φ(u) = 0
(3.2)

φ(u) = 0 ⇐⇒ (s− u)|φ(s). (Theorem 2.16.)
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Intersection number

Point of intersection of l and C ⇐⇒ u ∈ k such that φ(u) = 0
(3.2)

φ(u) = 0 ⇐⇒ (s− u)|φ(s). (Theorem 2.16.)

l ∩ C is the set of points (x0 − bu, y0 + au) such that (s− u)|φ(s).
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Intersection number

Point of intersection of l and C ⇐⇒ u ∈ k such that φ(u) = 0
(3.2)

φ(u) = 0 ⇐⇒ (s− u)|φ(s). (Theorem 2.16.)

l ∩ C is the set of points (x0 − bu, y0 + au) such that (s− u)|φ(s).

Definition 3.3. Let q = (x0 − bu, y0 + au) be a point of l, for some u ∈ k.

The intersection number I(q, f, l) of C and l at q is the largest integer r such
that

(s− u)r|φ(s).
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Example 3.4. Let f = x2 − y and

let l1 be the line with equation x− y = 0,

let l0 be the line with equation y = 0 and

let l′ be the line with equation y + 1 = 0.
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Example 3.4. Let f = x2 − y and

let l1 be the line with equation x− y = 0,

let l0 be the line with equation y = 0 and

let l′ be the line with equation y + 1 = 0.

Then l1 has parametric form (s, s),

l0 has parametric form (s, 0) and

l′ has parametric form (s,−1), where s ∈ k.
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Example 3.5. Let f = x2 − y and

let lm be the line with equation y = mx.
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Example 3.5. Let f = x2 − y and

let lm be the line with equation y = mx.

Then lm has parametric form (s,ms), where s ∈ k.
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Number of intersections

Suppose (x0, y0) ∈ l and that l has parametric form (x0 − bs, y0 + as).

If l ⊆ Cf then φ(s) = 0, for all s ∈ k.
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Number of intersections

Suppose (x0, y0) ∈ l and that l has parametric form (x0 − bs, y0 + as).

If l ⊆ Cf then φ(s) = 0, for all s ∈ k.

Theorem 2.18 ⇒ that φ is the zero polynomial (as long as k is an infinite field),
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Number of intersections

Suppose (x0, y0) ∈ l and that l has parametric form (x0 − bs, y0 + as).

If l ⊆ Cf then φ(s) = 0, for all s ∈ k.

Theorem 2.18 ⇒ that φ is the zero polynomial (as long as k is an infinite field),

so (s− u)r|φ(s), for all r ≥ 0
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Number of intersections

Suppose (x0, y0) ∈ l and that l has parametric form (x0 − bs, y0 + as).

If l ⊆ Cf then φ(s) = 0, for all s ∈ k.

Theorem 2.18 ⇒ that φ is the zero polynomial (as long as k is an infinite field),

so (s− u)r|φ(s), for all r ≥ 0

and the intersection number I(q, f, l) =∞, for all q ∈ A2(k).
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Number of intersections

Suppose (x0, y0) ∈ l and that l has parametric form (x0 − bs, y0 + as).

If l ⊆ Cf then φ(s) = 0, for all s ∈ k.

Theorem 2.18 ⇒ that φ is the zero polynomial (as long as k is an infinite field),

so (s− u)r|φ(s), for all r ≥ 0

and the intersection number I(q, f, l) =∞, for all q ∈ A2(k).

Theorem 3.6. If C is an affine curve, with polynomial f of degree d ≥ 0, and l
is a line with l 6⊆ C then l∩C has at most d points, counted with multiplicity.

That is
∑

p∈l∩C

I(p, f, l) ≤ d.

– Typeset by FoilTEX – 38



Lines and curves

Example 4.1. The curve y − x2 = 0.
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Lines and curves

Example 4.1. The curve y − x2 = 0.

Example 4.2. The curve y2 − x3 − x2 = 0.
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Polynomials and Taylor’s theorem

Definition 4.3. Let f = a0 + a1x+ · · · anxn be a polynomial in k[x]. Then the
derivative of f with respect to x is

f ′ = a1 + 2a2x+ · · ·+ nanx
n−1.
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Polynomials and Taylor’s theorem

Definition 4.3. Let f = a0 + a1x+ · · · anxn be a polynomial in k[x]. Then the
derivative of f with respect to x is

f ′ = a1 + 2a2x+ · · ·+ nanx
n−1.

Theorem 4.4. Let f be a polynomial of degree d in k[x] and let u be an element
of k. Then the Taylor expansion of f is

f(x) = f(u) + (x− u)f ′(u) +
(x− u)2

2!
f ′′(u)+

· · ·+ (x− u)d

d!
f (d)(u).
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Proof of Taylor’s theorem

The polynomial f(x+ u) has degree d and we can write

f(x+ u) = a0 + a1x+ · · · anxd, with ai ∈ k.
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Proof of Taylor’s theorem

The polynomial f(x+ u) has degree d and we can write

f(x+ u) = a0 + a1x+ · · · anxd, with ai ∈ k.

The rth derivative of f(x+ u) with respect to x is then

f (r)(x+ u) = r!ar + (r + 1)!ar+1x+ · · ·+ d!
(d− r)!

adx
d−r.
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Proof of Taylor’s theorem

The polynomial f(x+ u) has degree d and we can write

f(x+ u) = a0 + a1x+ · · · anxd, with ai ∈ k.

The rth derivative of f(x+ u) with respect to x is then

f (r)(x+ u) = r!ar + (r + 1)!ar+1x+ · · ·+ d!
(d− r)!

adx
d−r.

Setting x = 0 in the above expression we obtain f (r)(u) = r!ar.
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Proof of Taylor’s theorem

The polynomial f(x+ u) has degree d and we can write

f(x+ u) = a0 + a1x+ · · · anxd, with ai ∈ k.

The rth derivative of f(x+ u) with respect to x is then

f (r)(x+ u) = r!ar + (r + 1)!ar+1x+ · · ·+ d!
(d− r)!

adx
d−r.

Setting x = 0 in the above expression we obtain f (r)(u) = r!ar.

Therefore f(x+ u) = f(u) + xf ′(u) +
x2

2!
f ′′(u) + · · ·+ xd

d!
f (d)(u).
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Proof of Taylor’s theorem

The polynomial f(x+ u) has degree d and we can write

f(x+ u) = a0 + a1x+ · · · anxd, with ai ∈ k.

The rth derivative of f(x+ u) with respect to x is then

f (r)(x+ u) = r!ar + (r + 1)!ar+1x+ · · ·+ d!
(d− r)!

adx
d−r.

Setting x = 0 in the above expression we obtain f (r)(u) = r!ar.

Therefore f(x+ u) = f(u) + xf ′(u) +
x2

2!
f ′′(u) + · · ·+ xd

d!
f (d)(u).

Substitution of x− u for x above gives the required result.
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Partial derivatives of polynomials

We use the notation
∂f

∂xi
or fxi or fi

for the partial derivative of f with respect to xi.
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Partial derivatives of polynomials

We use the notation
∂f

∂xi
or fxi or fi

for the partial derivative of f with respect to xi.

Example

If f(x, y) = x8y3 + 3x2y6 + 17x+ y10 + 3 then

∂f

∂x
(x, y) = 8x7y3 + 6xy6 + 17

and
∂f

∂y
(x, y) = 3x8y2 + 18x2y5 + 10y9.
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The chain rule

Theorem 4.5. Let f(x1, . . . , xn) be an element of k[x1, . . . , xn]

and let g1(s), ..., gn(s) be elements of k[s].

Then, differentiating f(g1(s), . . . , gn(s)) with respect to s, we obtain

f ′(g1(s), . . . , gn(s)) =
n
∑

i=1

fxi(g1(s), . . . , gn(s))g′i(s).
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Taylor’s Theorem

Theorem 4.6. Let f ∈ k[x, y] be a polynomial of degree n and let a, b, x0, y0 ∈ k.

Then

f(sa+ x0, sb+ y0) = f(x0, y0)

+ s(a
∂f

∂x
(x0, y0) + b

∂f

∂y
(x0, y0))

...

+
sn

n!

n
∑

j=0

(

n
j

)

an−jbj
∂nf

∂xn−j∂yj
(x0, y0).

– Typeset by FoilTEX – 44



Proof of Taylor’s theorem (several variables)

Let φ(s) = f(sa + x0, sb + y0). Using Taylor’s theorem for polynomials of one
variable (Theorem 4.4) we have

φ(s) = φ(0) + sφ′(0) +
s2

2!
φ′′(0) + · · ·+ sn

n!
φ(n)(0).
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Proof of Taylor’s theorem (several variables)

Let φ(s) = f(sa + x0, sb + y0). Using Taylor’s theorem for polynomials of one
variable (Theorem 4.4) we have

φ(s) = φ(0) + sφ′(0) +
s2

2!
φ′′(0) + · · ·+ sn

n!
φ(n)(0).

Using the chain rule

φ(0) = f(x0, y0)

φ′(0) = a
∂f

∂x
(x0, y0) + b

∂f

∂y
(x0, y0)

...

φ(k)(0) =
k
∑

j=0

(

k
j

)

ak−jbj
∂kf

∂xk−j∂yj
(x0, y0).

– Typeset by FoilTEX – 45



Taylor’s theorem again

Corollary 4.7. Let f ∈ k[x, y] be a polynomial of degree n and let x0, y0 ∈ k.

Then

f(x, y) = f(x0, y0)

+
(

(x− x0)
∂f

∂x
(x0, y0) + (y − y0)

∂f

∂y
(x0, y0)

)

...

+
1
n!

n
∑

j=0

(

n
j

)

(x− x0)n−j(y − y0)j
∂nf

∂xn−j∂yj
(x0, y0).
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Taylor’s theorem again

Corollary 4.7. Let f ∈ k[x, y] be a polynomial of degree n and let x0, y0 ∈ k.

Then

f(x, y) = f(x0, y0)

+
(

(x− x0)
∂f

∂x
(x0, y0) + (y − y0)

∂f

∂y
(x0, y0)

)

...

+
1
n!

n
∑

j=0

(

n
j

)

(x− x0)n−j(y − y0)j
∂nf

∂xn−j∂yj
(x0, y0).

Proof.

Set s = 1, a = x− x0 and b = y − y0 in the Theorem.
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Homogenous polynomials of 2 variables

A ratio (a : b) is non–zero if (a, b) 6= (0, 0).
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Homogenous polynomials of 2 variables

A ratio (a : b) is non–zero if (a, b) 6= (0, 0).

Lemma 4.8. Let f(x, y) be a homogenous polynomial of degree d ≥ 0 in 2
variables.

Then there are at most d non–zero ratios (a : b) such that f(a, b) = 0.

If k = C then

f(x, y) = a0

d
∏

i=1

(bix− aiy),

for some ai, bi ∈ C.
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Proof

Write

f =
d
∑

j=0

cjx
jyd−j,

where cj 6= 0, for some j.
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Proof

Write

f =
d
∑

j=0

cjx
jyd−j,

where cj 6= 0, for some j.

Given (a, b) we have f(a, b) = 0 if and only if f(ta, tb) = 0, for all t 6= 0.
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Proof

Write

f =
d
∑

j=0

cjx
jyd−j,

where cj 6= 0, for some j.

Given (a, b) we have f(a, b) = 0 if and only if f(ta, tb) = 0, for all t 6= 0.

Hence (a, b) is a zero of f if and only if (c, d) is a zero of f , for all (c, d) with
(c : d) = (a : b).
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Proof

Write

f =
d
∑

j=0

cjx
jyd−j,

where cj 6= 0, for some j.

Given (a, b) we have f(a, b) = 0 if and only if f(ta, tb) = 0, for all t 6= 0.

Hence (a, b) is a zero of f if and only if (c, d) is a zero of f , for all (c, d) with
(c : d) = (a : b).

Any non–zero ratio (a : 0) is equal to (1 : 0)

and any ratio (a : b) with b 6= 0 is equal to (t : 1), with t = a/b.
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Firstly suppose that (1, 0) is not a zero of f .

Then cd 6= 0 and any ratio which is a zero of f has a representative of the form
(t : 1).

– Typeset by FoilTEX – 49



Firstly suppose that (1, 0) is not a zero of f .

Then cd 6= 0 and any ratio which is a zero of f has a representative of the form
(t : 1).

Thus

f(t, 1) =
d
∑

j=0

cjt
j,

is a polynomial of degree d.
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Firstly suppose that (1, 0) is not a zero of f .

Then cd 6= 0 and any ratio which is a zero of f has a representative of the form
(t : 1).

Thus

f(t, 1) =
d
∑

j=0

cjt
j,

is a polynomial of degree d.

From Theorem 2.16, there are at most d zeros of f(t, 1). This proves the first
statement of the lemma.
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If k = C then

f(t, 1) = a0

d
∏

i=1

(t− ai),

for some ai ∈ C.
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If k = C then

f(t, 1) = a0

d
∏

i=1

(t− ai),

for some ai ∈ C.

Let
t =

x

y
.

Then

f(t, 1) = a0

d
∏

i=1

(

x

y
− ai

)
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If k = C then

f(t, 1) = a0

d
∏

i=1

(t− ai),

for some ai ∈ C.

Let
t =

x

y
.

Then

f(t, 1) = a0

d
∏

i=1

(

x

y
− ai

)

and so

f(x, y) = ydf(t, 1) = a0

d
∏

i=1

(x− aiy) .

– Typeset by FoilTEX – 50



Now suppose that (1, 0) is a zero of f . Then cd = 0 so there is e ≥ 1 such that

cd = cd−1 = · · · = cd−e+1 = 0 and cd−e 6= 0.
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Now suppose that (1, 0) is a zero of f . Then cd = 0 so there is e ≥ 1 such that

cd = cd−1 = · · · = cd−e+1 = 0 and cd−e 6= 0.

Thus

f =
d−e
∑

j=0

cjx
jyd−j = ye

d−e
∑

j=0

cjx
jyd−e−j.
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Now suppose that (1, 0) is a zero of f . Then cd = 0 so there is e ≥ 1 such that

cd = cd−1 = · · · = cd−e+1 = 0 and cd−e 6= 0.

Thus

f =
d−e
∑

j=0

cjx
jyd−j = ye

d−e
∑

j=0

cjx
jyd−e−j.

Since cd−e 6= 0 the result now follows from the previous case.
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Singular points

Definition 4.9. Let C be an affine curve with polynomial f .

A point (x0, y0) of C is called singular if

fx(x0, y0) = fy(x0, y0) = 0.
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Singular points

Definition 4.9. Let C be an affine curve with polynomial f .

A point (x0, y0) of C is called singular if

fx(x0, y0) = fy(x0, y0) = 0.

Otherwise (x0, y0) is called non–singular.
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Singular points

Definition 4.9. Let C be an affine curve with polynomial f .

A point (x0, y0) of C is called singular if

fx(x0, y0) = fy(x0, y0) = 0.

Otherwise (x0, y0) is called non–singular.

If all its points are non–singular then the curve C is called non–singular.
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Singular points

Definition 4.9. Let C be an affine curve with polynomial f .

A point (x0, y0) of C is called singular if

fx(x0, y0) = fy(x0, y0) = 0.

Otherwise (x0, y0) is called non–singular.

If all its points are non–singular then the curve C is called non–singular.

Example 4.10. Find all singular points of the curve with equation

f(x, y) = x3 + y3 − 3xy.
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Example 4.11. Find all singular points of the curve with equation

f(x, y) = x3 + y3 − 2x2 + y2 + x.
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Example 4.11. Find all singular points of the curve with equation

f(x, y) = x3 + y3 − 2x2 + y2 + x.
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We have
fx = 3x2 − 4x+ 1 and fy = 3y2 + 2y.
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We have
fx = 3x2 − 4x+ 1 and fy = 3y2 + 2y.

Hence fy = 0 if and only if y = 0 or y = −2/3.
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We have
fx = 3x2 − 4x+ 1 and fy = 3y2 + 2y.

Hence fy = 0 if and only if y = 0 or y = −2/3.

Case 1, y = 0: In this case

f(x, y) = x3 − 2x2 + x = x(x− 1)2 = 0

if and only if x = 0 or x = 1.
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We have
fx = 3x2 − 4x+ 1 and fy = 3y2 + 2y.

Hence fy = 0 if and only if y = 0 or y = −2/3.

Case 1, y = 0: In this case

f(x, y) = x3 − 2x2 + x = x(x− 1)2 = 0

if and only if x = 0 or x = 1.

If x = 0 then y = x = 0 and so fx = 1 6= 0.
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We have
fx = 3x2 − 4x+ 1 and fy = 3y2 + 2y.

Hence fy = 0 if and only if y = 0 or y = −2/3.

Case 1, y = 0: In this case

f(x, y) = x3 − 2x2 + x = x(x− 1)2 = 0

if and only if x = 0 or x = 1.

If x = 0 then y = x = 0 and so fx = 1 6= 0.

Hence (0, 0) is not a singular point.
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We have
fx = 3x2 − 4x+ 1 and fy = 3y2 + 2y.

Hence fy = 0 if and only if y = 0 or y = −2/3.

Case 1, y = 0: In this case

f(x, y) = x3 − 2x2 + x = x(x− 1)2 = 0

if and only if x = 0 or x = 1.

If x = 0 then y = x = 0 and so fx = 1 6= 0.

Hence (0, 0) is not a singular point.

If x = 1 then fx = 0, so we have

f(1, 0) = fx(1, 0) = fy(1, 0) = 0.
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We have
fx = 3x2 − 4x+ 1 and fy = 3y2 + 2y.

Hence fy = 0 if and only if y = 0 or y = −2/3.

Case 1, y = 0: In this case

f(x, y) = x3 − 2x2 + x = x(x− 1)2 = 0

if and only if x = 0 or x = 1.

If x = 0 then y = x = 0 and so fx = 1 6= 0.

Hence (0, 0) is not a singular point.

If x = 1 then fx = 0, so we have

f(1, 0) = fx(1, 0) = fy(1, 0) = 0.

Hence (1, 0) is a singularity.
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Case 2, y = −2/3: In this case fx = 0 if and only if x = 1 or 1/3.
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Case 2, y = −2/3: In this case fx = 0 if and only if x = 1 or 1/3.

Also
f(x,−2/3) = x3 − 2x2 + x− (2/3)3 + (2/3)2.
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Case 2, y = −2/3: In this case fx = 0 if and only if x = 1 or 1/3.

Also
f(x,−2/3) = x3 − 2x2 + x− (2/3)3 + (2/3)2.

As
f(1,−2/3) 6= 0 and f(1/3,−2/3) 6= 0

there are no singular points with y-coordinate −2/3.
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Case 2, y = −2/3: In this case fx = 0 if and only if x = 1 or 1/3.

Also
f(x,−2/3) = x3 − 2x2 + x− (2/3)3 + (2/3)2.

As
f(1,−2/3) 6= 0 and f(1/3,−2/3) 6= 0

there are no singular points with y-coordinate −2/3.

The curve has one singular point (1, 0).
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Multiplicity

Definition 4.12. Let C be a curve with equation f = 0. A point p = (x0, y0)
of C has multiplicity r if

1. f(x0, y0) = 0,
∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0,

...
∂r−1f

∂xr−1
(x0, y0) =

∂r−1f

∂xr−2∂y
(x0, y0) = . . . =

∂r−1f

∂x∂yr−2
(x0, y0) =

∂r−1f

∂yr−1
(x0, y0) = 0

and

2.
∂rf

∂xr−j∂yj
(x0, y0) 6= 0, for some j with 0 ≤ j ≤ r.
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Simple, double, ...

Definition 4.13. A point of C of multiplicity 1 is called non–singular. A point
of multiplicity greater than 1 is called singular.

1. Points of multiplicity 1 are called simple points.

2. Points of multiplicity 2 are called double points.

3. Points of multiplicity 3 are called triple points.

4. Points of multiplicity r are called r–tuple points.
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Simple, double, ...

Definition 4.13. A point of C of multiplicity 1 is called non–singular. A point
of multiplicity greater than 1 is called singular.

1. Points of multiplicity 1 are called simple points.

2. Points of multiplicity 2 are called double points.

3. Points of multiplicity 3 are called triple points.

4. Points of multiplicity r are called r–tuple points.

non–singular = simple
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Simple, double, ...

Definition 4.13. A point of C of multiplicity 1 is called non–singular. A point
of multiplicity greater than 1 is called singular.

1. Points of multiplicity 1 are called simple points.

2. Points of multiplicity 2 are called double points.

3. Points of multiplicity 3 are called triple points.

4. Points of multiplicity r are called r–tuple points.

non–singular = simple

singular ⇐⇒ multiplicity > 1
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Example 4.14. Find the multiplicity of each singular point of the curve with
equation

f(x, y) = x3 + y3 − 3xy.
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Example 4.14. Find the multiplicity of each singular point of the curve with
equation

f(x, y) = x3 + y3 − 3xy.

From Example 4.10 we know that the curve has one singular point (0, 0).
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Example 4.15. Find the multiplicity of each singular point of the curve with
equation

f(x, y) = x3 + y3 − 2x2 + y2 + x.
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Example 4.15. Find the multiplicity of each singular point of the curve with
equation

f(x, y) = x3 + y3 − 2x2 + y2 + x.

From Example 4.11 we know that the curve has one singular point (1, 0).
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Example 4.15. Find the multiplicity of each singular point of the curve with
equation

f(x, y) = x3 + y3 − 2x2 + y2 + x.

From Example 4.11 we know that the curve has one singular point (1, 0).

We have
fxx = 6x− 4, fxy = 0 and fyy = 6y + 2.

– Typeset by FoilTEX – 59



Example 4.15. Find the multiplicity of each singular point of the curve with
equation

f(x, y) = x3 + y3 − 2x2 + y2 + x.

From Example 4.11 we know that the curve has one singular point (1, 0).

We have
fxx = 6x− 4, fxy = 0 and fyy = 6y + 2.

As fxx(1, 0) = 2 6= 0 it follows that (1, 0) is a double point.
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Tangents

Let p = (x0, y0) be a point on the curve C of degree d with equation f = 0.
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Tangents

Let p = (x0, y0) be a point on the curve C of degree d with equation f = 0.

For t = 0, . . . , d, define the polynomial Ft in two variables α and β as follows.
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Tangents

Let p = (x0, y0) be a point on the curve C of degree d with equation f = 0.

For t = 0, . . . , d, define the polynomial Ft in two variables α and β as follows.

F0(α, β) = f(x0, y0) and

(4.1)
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Tangents

Let p = (x0, y0) be a point on the curve C of degree d with equation f = 0.

For t = 0, . . . , d, define the polynomial Ft in two variables α and β as follows.

F0(α, β) = f(x0, y0) and

Ft(α, β) =
t
∑

j=0

(

t
j

)

αt−jβj
∂tf

∂xt−j∂yj
(x0, y0), for t > 0. (4.1)
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Tangents

Let p = (x0, y0) be a point on the curve C of degree d with equation f = 0.

For t = 0, . . . , d, define the polynomial Ft in two variables α and β as follows.

F0(α, β) = f(x0, y0) and

Ft(α, β) =
t
∑

j=0

(

t
j

)

αt−jβj
∂tf

∂xt−j∂yj
(x0, y0), for t > 0. (4.1)

Then Ft is either zero or homogeneous of degree t.
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A line l through p with direction ratio (a : b) has parametric form (x0+as, y0+bs).

– Typeset by FoilTEX – 61



A line l through p with direction ratio (a : b) has parametric form (x0+as, y0+bs).

Definition 4.16. Let p = (x0, y0) be a point of multiplicity r on C.

The line l with parametric form (x0 + as, y0 + bs) is called a tangent to C at
p if

Fr(a, b) = 0.
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A line l through p with direction ratio (a : b) has parametric form (x0+as, y0+bs).

Definition 4.16. Let p = (x0, y0) be a point of multiplicity r on C.

The line l with parametric form (x0 + as, y0 + bs) is called a tangent to C at
p if

Fr(a, b) = 0.

As Fr is non–zero it is homogeneous of degree r and it follows, from Lemma 4.8,
that there are at most r tangents at a point of multiplicity r.
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Example 4.17. Find all tangents to the complex curve with equation

f(x, y) = x3 + y3 − 3xy

at the points (0, 0) and (3/2, 3/2).
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Example 4.17. Find all tangents to the complex curve with equation

f(x, y) = x3 + y3 − 3xy

at the points (0, 0) and (3/2, 3/2).

From Example 4.14 we know that the curve has one singular point (0, 0) of
multiplicity 2.
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Example 4.17. Find all tangents to the complex curve with equation

f(x, y) = x3 + y3 − 3xy

at the points (0, 0) and (3/2, 3/2).

From Example 4.14 we know that the curve has one singular point (0, 0) of
multiplicity 2.

Therefore (3/2, 3/2) is a simple point.

– Typeset by FoilTEX – 62



Example 4.18. Find all tangents to the complex curve with equation

f(x, y) = x3 + y3 − 2x2 + y2 + x

at singular points.
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Example 4.18. Find all tangents to the complex curve with equation

f(x, y) = x3 + y3 − 2x2 + y2 + x

at singular points.

From Example 4.15 the curve has one singularity: the double point (1, 0).
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Example 4.18. Find all tangents to the complex curve with equation

f(x, y) = x3 + y3 − 2x2 + y2 + x

at singular points.

From Example 4.15 the curve has one singularity: the double point (1, 0).

As (1, 0) is a point of multiplicity 2 the tangents must have direction ratios (a : b)
which are zeroes of

x2fxx(1, 0) + 2xyfxy(1, 0) + y2fyy(1, 0) = 2x2 + 2y2.
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Example 4.18. Find all tangents to the complex curve with equation

f(x, y) = x3 + y3 − 2x2 + y2 + x

at singular points.

From Example 4.15 the curve has one singularity: the double point (1, 0).

As (1, 0) is a point of multiplicity 2 the tangents must have direction ratios (a : b)
which are zeroes of

x2fxx(1, 0) + 2xyfxy(1, 0) + y2fyy(1, 0) = 2x2 + 2y2.

We have 2x2 + 2y2 = 0 if and only if (x+ iy)(x− iy) = 0

so (a : b) = (i : 1) or (i : −1).
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Example 4.18. Find all tangents to the complex curve with equation

f(x, y) = x3 + y3 − 2x2 + y2 + x

at singular points.

From Example 4.15 the curve has one singularity: the double point (1, 0).

As (1, 0) is a point of multiplicity 2 the tangents must have direction ratios (a : b)
which are zeroes of

x2fxx(1, 0) + 2xyfxy(1, 0) + y2fyy(1, 0) = 2x2 + 2y2.

We have 2x2 + 2y2 = 0 if and only if (x+ iy)(x− iy) = 0

so (a : b) = (i : 1) or (i : −1).

The tangents at (1, 0) are therefore the lines

l1 = {(is+ 1, s)|s ∈ k} and l2 = {(is+ 1,−s)|s ∈ k}.

– Typeset by FoilTEX – 63



Tangents and Intersection numbers

Let p = (x0, y0) be a point on the curve C with equation f = 0.
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Tangents and Intersection numbers

Let p = (x0, y0) be a point on the curve C with equation f = 0.

A line l through p with direction ratio (a : b) has parametric form (x0+as, y0+bs).
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Tangents and Intersection numbers

Let p = (x0, y0) be a point on the curve C with equation f = 0.

A line l through p with direction ratio (a : b) has parametric form (x0+as, y0+bs).

Define
φ(a,b)(s) = f(x0 + as, y0 + bs).
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Tangents and Intersection numbers

Let p = (x0, y0) be a point on the curve C with equation f = 0.

A line l through p with direction ratio (a : b) has parametric form (x0+as, y0+bs).

Define
φ(a,b)(s) = f(x0 + as, y0 + bs).

Then I(p, f, l) is the highest power of s dividing φ(a,b)(s).
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Tangents and Intersection numbers

Let p = (x0, y0) be a point on the curve C with equation f = 0.

A line l through p with direction ratio (a : b) has parametric form (x0+as, y0+bs).

Define
φ(a,b)(s) = f(x0 + as, y0 + bs).

Then I(p, f, l) is the highest power of s dividing φ(a,b)(s).

That is

I(p, f, l) = m if and only if sm|φ(a,b)(s) and sm+1 - φ(a,b)(s).
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From Theorem 4.6,

φ(a,b)(s) =
d
∑

t=0

st

t!
Ft(a, b),

where Ft(α, β) is defined in (4.1).
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From Theorem 4.6,

φ(a,b)(s) =
d
∑

t=0

st

t!
Ft(a, b),

where Ft(α, β) is defined in (4.1).

If p is a point of multiplicity r then we have

F0(α, β) = · · · = Fr−1(α, β) = 0
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From Theorem 4.6,

φ(a,b)(s) =
d
∑

t=0

st

t!
Ft(a, b),

where Ft(α, β) is defined in (4.1).

If p is a point of multiplicity r then we have

F0(α, β) = · · · = Fr−1(α, β) = 0

so that in fact

φ(a,b)(s) =
d
∑

t=r

st

t!
Ft(a, b).
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Therefore, for all ratios (a : b),

sr|φ(a,b)(s).
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Therefore, for all ratios (a : b),

sr|φ(a,b)(s).

That is, for all lines l through a point p of multiplicity r,

I(p, f, l) ≥ r.
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Therefore, for all ratios (a : b),

sr|φ(a,b)(s).

That is, for all lines l through a point p of multiplicity r,

I(p, f, l) ≥ r.

Furthermore, for a given line l with direction ration (a, b),

I(p, f, l) > r ⇐⇒ sr+1|φ(a,b)(s)
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Therefore, for all ratios (a : b),

sr|φ(a,b)(s).

That is, for all lines l through a point p of multiplicity r,

I(p, f, l) ≥ r.

Furthermore, for a given line l with direction ration (a, b),

I(p, f, l) > r ⇐⇒ sr+1|φ(a,b)(s)

⇐⇒ Fr(a, b) = 0.
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From Lemma 4.8, there are at most r ratios (a : b) such that Fr(a, b) = 0.
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From Lemma 4.8, there are at most r ratios (a : b) such that Fr(a, b) = 0.

So there are at most r lines through the point p such that I(p, f, l) > r:
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From Lemma 4.8, there are at most r ratios (a : b) such that Fr(a, b) = 0.

So there are at most r lines through the point p such that I(p, f, l) > r:

each such line has direction ratio (a : b) where Fr(a, b) = 0.
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From Lemma 4.8, there are at most r ratios (a : b) such that Fr(a, b) = 0.

So there are at most r lines through the point p such that I(p, f, l) > r:

each such line has direction ratio (a : b) where Fr(a, b) = 0.

Theorem 4.19. Let p be and r–tuple point of a curve C.

Then a line l is a tangent to C at p if and only if

I(p, f, l) > r.
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Example 4.20. As we saw in Example 4.17, the tangents to the curve curve with
equation

f(x, y) = x3 + y3 − 3xy

at the point (0, 0) are the lines x = 0 and y = 0 with parametric forms (0, s) and
(s, 0), respectively.
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Multiplicity at (0, 0)

Corollary 4.21. Let C be a curve with equation f = 0 and assume that p = (0, 0)
is a point of C.

Then p has multiplicity r on C if and only if the lowest order terms of f have
degree r.
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Multiplicity at (0, 0)

Corollary 4.21. Let C be a curve with equation f = 0 and assume that p = (0, 0)
is a point of C.

Then p has multiplicity r on C if and only if the lowest order terms of f have
degree r.

In this case let Gr be the sum of lowest order terms of f .

Then a line l through p is tangent to C at p if and only if l has a parametric
form (as, bs) where Gr(a, b) = 0.
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Proof. Write
f = G0 +G1 + · · ·+Gd,

where Gt is either zero or homogenous of degree t and Gd is non–zero.
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Proof. Write
f = G0 +G1 + · · ·+Gd,

where Gt is either zero or homogenous of degree t and Gd is non–zero.

From Corollary 4.7, with (x0, y0) = (0, 0), we see that

Gt(x, y) =
1
t!
Ft(x, y),

where Ft is defined in (4.1).
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Proof. Write
f = G0 +G1 + · · ·+Gd,

where Gt is either zero or homogenous of degree t and Gd is non–zero.

From Corollary 4.7, with (x0, y0) = (0, 0), we see that

Gt(x, y) =
1
t!
Ft(x, y),

where Ft is defined in (4.1).

Hence (0, 0) has multiplicity r if and only if

G0 = · · · = Gr−1 = 0 and Gr 6= 0.
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Proof. Write
f = G0 +G1 + · · ·+Gd,

where Gt is either zero or homogenous of degree t and Gd is non–zero.

From Corollary 4.7, with (x0, y0) = (0, 0), we see that

Gt(x, y) =
1
t!
Ft(x, y),

where Ft is defined in (4.1).

Hence (0, 0) has multiplicity r if and only if

G0 = · · · = Gr−1 = 0 and Gr 6= 0.

This proves the first statement. The second follows similarly.
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Example 4.22.

Let C be the curve with polynomial f = (x2 + y2)2 + 3x2y − y3.

The point (0, 0) belongs to C and the sum of lowest order terms of f is 3x2y−y3.
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Example 4.22.

Let C be the curve with polynomial f = (x2 + y2)2 + 3x2y − y3.

The point (0, 0) belongs to C and the sum of lowest order terms of f is 3x2y−y3.

Therefore (0, 0) has multiplicity 3.
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Example 4.22.

Let C be the curve with polynomial f = (x2 + y2)2 + 3x2y − y3.

The point (0, 0) belongs to C and the sum of lowest order terms of f is 3x2y−y3.

Therefore (0, 0) has multiplicity 3.

The line with parametric form (as, bs) is tangent to C at (0, 0) if and only if
(a, b) is a zero of 3x2y − y3,

that is

if and only if b = 0 or 3a2 − b2 = 0.
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Example 4.22.

Let C be the curve with polynomial f = (x2 + y2)2 + 3x2y − y3.

The point (0, 0) belongs to C and the sum of lowest order terms of f is 3x2y−y3.

Therefore (0, 0) has multiplicity 3.

The line with parametric form (as, bs) is tangent to C at (0, 0) if and only if
(a, b) is a zero of 3x2y − y3,

that is

if and only if b = 0 or 3a2 − b2 = 0.

When b = 0 we have a tangent l with parametric form (s, 0).
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Example 4.22.

Let C be the curve with polynomial f = (x2 + y2)2 + 3x2y − y3.

The point (0, 0) belongs to C and the sum of lowest order terms of f is 3x2y−y3.

Therefore (0, 0) has multiplicity 3.

The line with parametric form (as, bs) is tangent to C at (0, 0) if and only if
(a, b) is a zero of 3x2y − y3,

that is

if and only if b = 0 or 3a2 − b2 = 0.

When b = 0 we have a tangent l with parametric form (s, 0).

When 3a2 − b2 = 0 we may assume a = 1 and so b = ±
√

3.
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Example 4.22.

Let C be the curve with polynomial f = (x2 + y2)2 + 3x2y − y3.

The point (0, 0) belongs to C and the sum of lowest order terms of f is 3x2y−y3.

Therefore (0, 0) has multiplicity 3.

The line with parametric form (as, bs) is tangent to C at (0, 0) if and only if
(a, b) is a zero of 3x2y − y3,

that is

if and only if b = 0 or 3a2 − b2 = 0.

When b = 0 we have a tangent l with parametric form (s, 0).

When 3a2 − b2 = 0 we may assume a = 1 and so b = ±
√

3.

In this case we obtain two tangents l′ and l′′ with parametric forms

(s, s
√

3) and (s,−s
√

3),

respectively.
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The real curve (x2 + y2)2 + 3x2y − y3 = 0

PSfrag replacements
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v0 = vm
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Ratios

A ratio, over k, is an n–tuple

(a1 : . . . : an)

of elements of k.
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Ratios

A ratio, over k, is an n–tuple

(a1 : . . . : an)

of elements of k.

Two ratios (a1 : . . . : an) and (b1 : . . . : bn) are equal if there exists a non–zero
element λ ∈ k with

a1 = λb1, a2 = λb2, . . . , an = λbn.
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Lines in the affine plane

In A2(k) a point is represented by an ordered pair (u, v).
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Lines in the affine plane

In A2(k) a point is represented by an ordered pair (u, v).

Lines:
ax+ by + c = 0, where (a, b) 6= (0, 0).
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Lines in the affine plane

In A2(k) a point is represented by an ordered pair (u, v).

Lines:
ax+ by + c = 0, where (a, b) 6= (0, 0).

Two points of A2(k) lie on a unique line.
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Lines in the affine plane

In A2(k) a point is represented by an ordered pair (u, v).

Lines:
ax+ by + c = 0, where (a, b) 6= (0, 0).

Two points of A2(k) lie on a unique line.

(x0, y0) and (x1, y1) lie on the line with parametric form

((x1 − x0)s+ x0, (y1 − y0)s+ y0).

– Typeset by FoilTEX – 74



Lines in the affine plane

In A2(k) a point is represented by an ordered pair (u, v).

Lines:
ax+ by + c = 0, where (a, b) 6= (0, 0).

Two points of A2(k) lie on a unique line.

(x0, y0) and (x1, y1) lie on the line with parametric form

((x1 − x0)s+ x0, (y1 − y0)s+ y0).

Lines may be parallel: two distinct lines are parallel if and only if their direction
ratios are equal.
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Homogeneous coordinates for A2(k)

To extend the affine plane to a plane in which any two lines do meet at a unique
point we first replace Cartesian coordinates with a new coordinate system.
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Homogeneous coordinates for A2(k)

To extend the affine plane to a plane in which any two lines do meet at a unique
point we first replace Cartesian coordinates with a new coordinate system.

Definition 5.1. The point (u, v) of A2(k) has homogeneous coordinates

(U : V : W ), where W 6= 0 and u =
U

W
, v =

V

W
.
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Homogeneous coordinates for A2(k)

To extend the affine plane to a plane in which any two lines do meet at a unique
point we first replace Cartesian coordinates with a new coordinate system.

Definition 5.1. The point (u, v) of A2(k) has homogeneous coordinates

(U : V : W ), where W 6= 0 and u =
U

W
, v =

V

W
.

Example 5.2. The coordinates (1 + i : 2 + i : 3) and (3 + i : 5 : 6− 3i) in A2(C).
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Extension to points with third coordinate zero

We now extend the plane by allowing points with homogeneous coordinates
(U : V : W ), where W = 0.

We exclude only the ratio (0 : 0 : 0).
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Extension to points with third coordinate zero

We now extend the plane by allowing points with homogeneous coordinates
(U : V : W ), where W = 0.

We exclude only the ratio (0 : 0 : 0).

Thus (1 : 2 : 0) and (0 : 5 : 0) are points of the extended plane.
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Extension to points with third coordinate zero

We now extend the plane by allowing points with homogeneous coordinates
(U : V : W ), where W = 0.

We exclude only the ratio (0 : 0 : 0).

Thus (1 : 2 : 0) and (0 : 5 : 0) are points of the extended plane.

Definition 5.3. Projective n–space over k, denoted Pn(k), is the set of non–
zero ratios

(a1 : . . . : an+1), where ai ∈ k.

Elements of Pn(k) are called points of Pn(k).
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The projective plane

The extended plane P2(k) consists of

1. points (u : v : w) ∈ A2(k), that is those with w 6= 0, and
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The projective plane

The extended plane P2(k) consists of

1. points (u : v : w) ∈ A2(k), that is those with w 6= 0, and

2. new points (u : v : 0), where (u, v) 6= (0, 0).
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Vector notation

In the projective plane, as in the affine plane

(u : v : w) = (λu : λv : λw), for all non–zero λ ∈ k.
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Vector notation

In the projective plane, as in the affine plane

(u : v : w) = (λu : λv : λw), for all non–zero λ ∈ k.

Given a fixed non–zero triple (u, v, w) the set

{(λu, λv, λw) : λ ∈ k} = 〈(u, v, w)〉

is a one–dimensional subspace of the vector space k3.
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Vector notation

In the projective plane, as in the affine plane

(u : v : w) = (λu : λv : λw), for all non–zero λ ∈ k.

Given a fixed non–zero triple (u, v, w) the set

{(λu, λv, λw) : λ ∈ k} = 〈(u, v, w)〉

is a one–dimensional subspace of the vector space k3.

Therefore there is a one to one correspondence between points of P2(k) and
one–dimensional vector subspaces of k3:

(u : v : w) corresponds to 〈(u, v, w)〉 .
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Vector notation

In the projective plane, as in the affine plane

(u : v : w) = (λu : λv : λw), for all non–zero λ ∈ k.

Given a fixed non–zero triple (u, v, w) the set

{(λu, λv, λw) : λ ∈ k} = 〈(u, v, w)〉

is a one–dimensional subspace of the vector space k3.

Therefore there is a one to one correspondence between points of P2(k) and
one–dimensional vector subspaces of k3:

(u : v : w) corresponds to 〈(u, v, w)〉 .

A similar statement holds for points of Pn(k), for any n ≥ 1.
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Lines in the projective plane

Suppose that l is a line in the affine plane with equation ax+ by + c = 0.
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Lines in the projective plane

Suppose that l is a line in the affine plane with equation ax+ by + c = 0.

A point (u : v : w) of A2(k) belongs to l if and only if

a
(u

w

)

+ b
( v

w

)

+ c = 0
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Lines in the projective plane

Suppose that l is a line in the affine plane with equation ax+ by + c = 0.

A point (u : v : w) of A2(k) belongs to l if and only if

a
(u

w

)

+ b
( v

w

)

+ c = 0

that is if and only if
au+ bv + cw = 0.
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Therefore (u : v : w) belongs to l if and only if (x, y, z) = (u, v, w) is a solution
to the equation

ax+ by + cz = 0.
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Therefore (u : v : w) belongs to l if and only if (x, y, z) = (u, v, w) is a solution
to the equation

ax+ by + cz = 0.

Note that
au+ bv + cw = 0 ⇐⇒ λau+ λbv + λcw = 0,

so it makes sense to speak of (u : v : w) as a solution of ax+ by + cz = 0.
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Therefore (u : v : w) belongs to l if and only if (x, y, z) = (u, v, w) is a solution
to the equation

ax+ by + cz = 0.

Note that
au+ bv + cw = 0 ⇐⇒ λau+ λbv + λcw = 0,

so it makes sense to speak of (u : v : w) as a solution of ax+ by + cz = 0.

Definition 5.4. Suppose (A,B,C) 6= (0, 0, 0). The projective line with
equation

Ax+By + Cz = 0

is the set of points

(u : v : w) ∈ P2(k) such that Au+Bv + Cw = 0.
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Two points determine a line

Lemma 5.5. Two distinct points p and q of P2(k) lie on a unique line.
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Two points determine a line

Lemma 5.5. Two distinct points p and q of P2(k) lie on a unique line.

Proof. The points (a : b : c) and (u : v : w) lie on the line with equation

(bw − cv)x+ (cu− aw)y + (av − bu)z = 0.
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Two points determine a line

Lemma 5.5. Two distinct points p and q of P2(k) lie on a unique line.

Proof. The points (a : b : c) and (u : v : w) lie on the line with equation

(bw − cv)x+ (cu− aw)y + (av − bu)z = 0.

That is ∣

∣

∣

∣

∣

∣

x y z
a b c
u v w

∣

∣

∣

∣

∣

∣

= 0. (5.3)
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Two lines determine a point

Lemma 5.6. Distinct lines in P2(k) meet at a unique point.
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Two lines determine a point

Lemma 5.6. Distinct lines in P2(k) meet at a unique point.

Proof. Suppose we have two lines with equations

Ax+By + Cz = 0 and A′x+B′y + C ′z = 0.
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Two lines determine a point

Lemma 5.6. Distinct lines in P2(k) meet at a unique point.

Proof. Suppose we have two lines with equations

Ax+By + Cz = 0 and A′x+B′y + C ′z = 0.

As we have two equations in three unknowns there will be at least one solution.
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Two lines determine a point

Lemma 5.6. Distinct lines in P2(k) meet at a unique point.

Proof. Suppose we have two lines with equations

Ax+By + Cz = 0 and A′x+B′y + C ′z = 0.

As we have two equations in three unknowns there will be at least one solution.

As the two lines are distinct it follows that

(A : B : C) 6= (A′ : B′ : C ′).

Therefore there is exactly one solution.
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Two lines determine a point

Lemma 5.6. Distinct lines in P2(k) meet at a unique point.

Proof. Suppose we have two lines with equations

Ax+By + Cz = 0 and A′x+B′y + C ′z = 0.

As we have two equations in three unknowns there will be at least one solution.

As the two lines are distinct it follows that

(A : B : C) 6= (A′ : B′ : C ′).

Therefore there is exactly one solution.

There are no parallel lines in P2(k)
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Parametric form of a projective line

Let l be a line in P2(k) through the points (a : b : c) and (u : v : w).

Then l has equation given by (5.3) above.

– Typeset by FoilTEX – 83



Parametric form of a projective line

Let l be a line in P2(k) through the points (a : b : c) and (u : v : w).

Then l has equation given by (5.3) above.

(x0 : y0 : z0) ∈ l if and only if the vector (x0, y0, z0) ∈ k3 is a linear combination
of the vectors (a, b, c) and (u, v, w):

otherwise the matrix in (5.3) will have non–zero determinant.
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Parametric form of a projective line

Let l be a line in P2(k) through the points (a : b : c) and (u : v : w).

Then l has equation given by (5.3) above.

(x0 : y0 : z0) ∈ l if and only if the vector (x0, y0, z0) ∈ k3 is a linear combination
of the vectors (a, b, c) and (u, v, w):

otherwise the matrix in (5.3) will have non–zero determinant.

That is, (x0 : y0 : z0) is a point of l if and only if

(x0, y0, z0) = (as+ ut, bs+ vt, cs+ wt), for some s, t ∈ k.
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Therefore

l = {(x : y : z) ∈ P2(k)|(x, y, z) = (as+ ut, bs+ vt, cs+ wt), with s, t ∈ k}
(5.4)
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Therefore

l = {(x : y : z) ∈ P2(k)|(x, y, z) = (as+ ut, bs+ vt, cs+ wt), with s, t ∈ k}
= {(as+ ut : bs+ vt : cs+ wt) ∈ P2(k)|s, t ∈ k}. (5.4)
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Therefore

l = {(x : y : z) ∈ P2(k)|(x, y, z) = (as+ ut, bs+ vt, cs+ wt), with s, t ∈ k}
= {(as+ ut : bs+ vt : cs+ wt) ∈ P2(k)|s, t ∈ k}. (5.4)

The expression (5.4) is called the parametric form of the line l.
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Therefore

l = {(x : y : z) ∈ P2(k)|(x, y, z) = (as+ ut, bs+ vt, cs+ wt), with s, t ∈ k}
= {(as+ ut : bs+ vt : cs+ wt) ∈ P2(k)|s, t ∈ k}. (5.4)

The expression (5.4) is called the parametric form of the line l.

As in the affine case we’ll say that l has parametric form

(as+ ut : bs+ vt : cs+ wt), for s, t ∈ k

when the meaning is clear.
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Homogeneous polynomials

Definition 5.7. A linear combination of monomials of degree d ≥ 0, with at
least one non–zero coefficient, is called a homogeneous polynomial of degree
d.
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Homogeneous polynomials

Definition 5.7. A linear combination of monomials of degree d ≥ 0, with at
least one non–zero coefficient, is called a homogeneous polynomial of degree
d.

Theorem 5.8. A polynomial f ∈ k[x1, . . . , xn] is homogeneous of degree d if
and only if f(tx1, . . . , txn) = tdf(x1, . . . , xn), for all t ∈ k.
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Homogeneous polynomials

Definition 5.7. A linear combination of monomials of degree d ≥ 0, with at
least one non–zero coefficient, is called a homogeneous polynomial of degree
d.

Theorem 5.8. A polynomial f ∈ k[x1, . . . , xn] is homogeneous of degree d if
and only if f(tx1, . . . , txn) = tdf(x1, . . . , xn), for all t ∈ k.

From the above it follows that if f(x, y, z) is homogeneous of degree d then
f(a, b, c) = 0 if and only if f(u, v, w) = 0, for all (u, v, w) ∈ k3 such that
(a : b : c) = (u : v : w).
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Projective curves

Definition 5.9. Let f be a homogeneous polynomial of degree d > 0 in k[x, y, z].
The set

Cf = {(a : b : c) ∈ P2(k) : f(a, b, c) = 0}
is called a projective curve of degree d in P2(k).
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Irreducible components

Theorem 5.10. If f is homogeneous and g|f then g is homogeneous.
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Irreducible components

Theorem 5.10. If f is homogeneous and g|f then g is homogeneous.

Let f be an irreducible homogeneous polynomial in k[x, y, z].

Then the curve Cf is called an irreducible projective curve.
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Irreducible components

Theorem 5.10. If f is homogeneous and g|f then g is homogeneous.

Let f be an irreducible homogeneous polynomial in k[x, y, z].

Then the curve Cf is called an irreducible projective curve.

If Cf is a projective curve and f has irreducible factorisation f = q1 · · · qn then

Cf = Cq1 ∪ · · · ∪ Cqn

and the projective curves Cqi are called the irreducible components of Cf .
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Irreducible components

Theorem 5.10. If f is homogeneous and g|f then g is homogeneous.

Let f be an irreducible homogeneous polynomial in k[x, y, z].

Then the curve Cf is called an irreducible projective curve.

If Cf is a projective curve and f has irreducible factorisation f = q1 · · · qn then

Cf = Cq1 ∪ · · · ∪ Cqn

and the projective curves Cqi are called the irreducible components of Cf .

Note that a homogeneous polynomial of degree 1 defines what we called a line in
definition 5.4.

That is, as in the affine plane, lines are curves of degree 1.
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Dehomogenization

Let F be a homogeneous polynomial of degree d in k[x, y, z].

The dehomogenization of F , with respect to z = 1, is the polynomial

f(x, y) = F (x, y, 1).
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Dehomogenization

Let F be a homogeneous polynomial of degree d in k[x, y, z].

The dehomogenization of F , with respect to z = 1, is the polynomial

f(x, y) = F (x, y, 1).

f is a polynomial of degree at most d in k[x, y].
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Dehomogenization

Let F be a homogeneous polynomial of degree d in k[x, y, z].

The dehomogenization of F , with respect to z = 1, is the polynomial

f(x, y) = F (x, y, 1).

f is a polynomial of degree at most d in k[x, y].

If F 6= azd then f is non–constant and if z - F then f has degree d.
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Dehomogenization

Let F be a homogeneous polynomial of degree d in k[x, y, z].

The dehomogenization of F , with respect to z = 1, is the polynomial

f(x, y) = F (x, y, 1).

f is a polynomial of degree at most d in k[x, y].

If F 6= azd then f is non–constant and if z - F then f has degree d.

If the dehomogenization f of the polynomial F is non–constant then we call the
affine curve Cf the dehomogenization of CF , with respect to z = 1.
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Example 5.11.

1. The projective curve with equation y3 − x2z = 0 has dehomogenization the
affine curve with equation y3 − x2 = 0.

– Typeset by FoilTEX – 89



Example 5.11.

1. The projective curve with equation y3 − x2z = 0 has dehomogenization the
affine curve with equation y3 − x2 = 0.

We can view the real projective curve as a set of lines through (0, 0) in R3.
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Example 5.11.

1. The projective curve with equation y3 − x2z = 0 has dehomogenization the
affine curve with equation y3 − x2 = 0.

We can view the real projective curve as a set of lines through (0, 0) in R3.

We obtain the real affine curve by intersecting the projective curve with the
plane z = 1:
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Example 5.11.

1. The projective curve with equation y3 − x2z = 0 has dehomogenization the
affine curve with equation y3 − x2 = 0.

We can view the real projective curve as a set of lines through (0, 0) in R3.

We obtain the real affine curve by intersecting the projective curve with the
plane z = 1:
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2. The projective curve with polynomial x3 + y3 − 3xyz has dehomogenization
the affine curve with polynomial x3 + y3 − 3xy.
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2. The projective curve with polynomial x3 + y3 − 3xyz has dehomogenization
the affine curve with polynomial x3 + y3 − 3xy.

In this drawing the z axis points straight up out of the page, whilst the x axis
points to the left and the y axis points upwards in the plane of the page.
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The next drawing is first rotated so that the z axis points out to the left and
then its tilted towards you.
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The line at infinity

The only curves which do not have a dehomogenization are those with equation
zd = 0.
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The line at infinity

The only curves which do not have a dehomogenization are those with equation
zd = 0.

We call the line z = 0 the line at infinity (with respect to z = 1).
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The line at infinity

The only curves which do not have a dehomogenization are those with equation
zd = 0.

We call the line z = 0 the line at infinity (with respect to z = 1).

If (u : v : w) is a point of P2(k) then either

1. w = 0 and it lies on the line at infinity, or
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The line at infinity

The only curves which do not have a dehomogenization are those with equation
zd = 0.

We call the line z = 0 the line at infinity (with respect to z = 1).

If (u : v : w) is a point of P2(k) then either

1. w = 0 and it lies on the line at infinity, or

2. w 6= 0 and it’s a point of A2(k).
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The line at infinity

The only curves which do not have a dehomogenization are those with equation
zd = 0.

We call the line z = 0 the line at infinity (with respect to z = 1).

If (u : v : w) is a point of P2(k) then either

1. w = 0 and it lies on the line at infinity, or

2. w 6= 0 and it’s a point of A2(k).

That is, the line at infinity consists of all the new points we added to A2(k) to
form P2(k).
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Let CF be a projective curve of degree d with equation F = 0 and let f(x, y) =
F (x, y, 1) be the dehomogenization of F .
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Let CF be a projective curve of degree d with equation F = 0 and let f(x, y) =
F (x, y, 1) be the dehomogenization of F .

Suppose that (u : v : w) is a point of CF . Then either

1. w = 0, in which case (u : v : w) lies on both the line at infinity and CF , or
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Let CF be a projective curve of degree d with equation F = 0 and let f(x, y) =
F (x, y, 1) be the dehomogenization of F .

Suppose that (u : v : w) is a point of CF . Then either

1. w = 0, in which case (u : v : w) lies on both the line at infinity and CF , or

2. w 6= 0, in which case
F (u/w, v/w, 1) = 0,

so
f(u/w, v/w) = 0.

In this case the point (u : v : w) is a point of the affine curve Cf .
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Let CF be a projective curve of degree d with equation F = 0 and let f(x, y) =
F (x, y, 1) be the dehomogenization of F .

Suppose that (u : v : w) is a point of CF . Then either

1. w = 0, in which case (u : v : w) lies on both the line at infinity and CF , or

2. w 6= 0, in which case
F (u/w, v/w, 1) = 0,

so
f(u/w, v/w) = 0.

In this case the point (u : v : w) is a point of the affine curve Cf .

Thus CF consists of the points of Cf together with the points where CF intersects
the line at infinity.
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Furthermore the polynomial F (x, y, 0) is homogeneous of degree d in two variables
x, y or it is the zero polynomial.
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Furthermore the polynomial F (x, y, 0) is homogeneous of degree d in two variables
x, y or it is the zero polynomial.

If F (x, y, 0) is not the zero polynomial there are at most d ratios (x : y : 0) such
that F (x, y, 0) = 0 (Lemma 4.8).
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Furthermore the polynomial F (x, y, 0) is homogeneous of degree d in two variables
x, y or it is the zero polynomial.

If F (x, y, 0) is not the zero polynomial there are at most d ratios (x : y : 0) such
that F (x, y, 0) = 0 (Lemma 4.8).

Therefore, either

1. F (x, y, 0) is non–zero and the set CF has at most d points on the line at
infinity or
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Furthermore the polynomial F (x, y, 0) is homogeneous of degree d in two variables
x, y or it is the zero polynomial.

If F (x, y, 0) is not the zero polynomial there are at most d ratios (x : y : 0) such
that F (x, y, 0) = 0 (Lemma 4.8).

Therefore, either

1. F (x, y, 0) is non–zero and the set CF has at most d points on the line at
infinity or

2. F (x, y, 0) = 0 and the line at infinity is contained in CF .
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Dehomogenisation with respect to x and y

We also define the dehomogenization of F and CF with respect to x = 1:

g(y, z) = F (1, y, z) and Cg
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Dehomogenisation with respect to x and y

We also define the dehomogenization of F and CF with respect to x = 1:

g(y, z) = F (1, y, z) and Cg

and with respect to y = 1:

h(x, z) = F (x, 1, z) and Ch.

– Typeset by FoilTEX – 95



Dehomogenisation with respect to x and y

We also define the dehomogenization of F and CF with respect to x = 1:

g(y, z) = F (1, y, z) and Cg

and with respect to y = 1:

h(x, z) = F (x, 1, z) and Ch.

The lines x = 0 and y = 0 are called the lines at infinity with respect to x = 1
and y = 1, respectively.
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Example 5.12. The projective curve y3−x2z = 0 has dehomogenizations y3−z =
0 and 1− x2z = 0 with respect to x = 1 and y = 1 respectively.
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Example 5.12. The projective curve y3−x2z = 0 has dehomogenizations y3−z =
0 and 1− x2z = 0 with respect to x = 1 and y = 1 respectively.

These dehomogenizations in the case R = k are, with respect to x = 1,
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and with respect to y = 1,
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Homogenization

Let f be a polynomial of degree d in k[x, y].

We form the homogenization of f by multiplying every term of degree d− k by
zk.

The resulting polynomial F (x, y, z) is homogeneous of degree d.
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Homogenization

Let f be a polynomial of degree d in k[x, y].

We form the homogenization of f by multiplying every term of degree d− k by
zk.

The resulting polynomial F (x, y, z) is homogeneous of degree d.

Formally

F (x, y, z) = zdf
(x

z
,
y

z

)

.
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Homogenization

Let f be a polynomial of degree d in k[x, y].

We form the homogenization of f by multiplying every term of degree d− k by
zk.

The resulting polynomial F (x, y, z) is homogeneous of degree d.

Formally

F (x, y, z) = zdf
(x

z
,
y

z

)

.

Caution Dehomogenization is not always the reverse of homogenization.
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Homogenization

Let f be a polynomial of degree d in k[x, y].

We form the homogenization of f by multiplying every term of degree d− k by
zk.

The resulting polynomial F (x, y, z) is homogeneous of degree d.

Formally

F (x, y, z) = zdf
(x

z
,
y

z

)

.

Caution Dehomogenization is not always the reverse of homogenization.

The homogenization of the affine curve Cf is the projective curve CF .
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Example 5.13. The line with equation x+ y+ 1 = 0 has homogenization the line
x+ y + z = 0.
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Example 5.13. The line with equation x+ y+ 1 = 0 has homogenization the line
x+ y + z = 0.

The line ax+ by + c = 0 has homogenization the line ax+ by + cz = 0.
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Example 5.13. The line with equation x+ y+ 1 = 0 has homogenization the line
x+ y + z = 0.

The line ax+ by + c = 0 has homogenization the line ax+ by + cz = 0.

This line meets the line z = 0 at points (u : v : w) where w = 0 and au+ bv = 0.
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Example 5.13. The line with equation x+ y+ 1 = 0 has homogenization the line
x+ y + z = 0.

The line ax+ by + c = 0 has homogenization the line ax+ by + cz = 0.

This line meets the line z = 0 at points (u : v : w) where w = 0 and au+ bv = 0.

That is at the unique point (−b : a : 0).
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Example 5.13. The line with equation x+ y+ 1 = 0 has homogenization the line
x+ y + z = 0.

The line ax+ by + c = 0 has homogenization the line ax+ by + cz = 0.

This line meets the line z = 0 at points (u : v : w) where w = 0 and au+ bv = 0.

That is at the unique point (−b : a : 0).

The direction ratio of this line is (−b : a : 0).
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Example 5.13. The line with equation x+ y+ 1 = 0 has homogenization the line
x+ y + z = 0.

The line ax+ by + c = 0 has homogenization the line ax+ by + cz = 0.

This line meets the line z = 0 at points (u : v : w) where w = 0 and au+ bv = 0.

That is at the unique point (−b : a : 0).

The direction ratio of this line is (−b : a : 0).

All affine lines which are parallel have the same direction ratio and so meet z = 0
at the same point.
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The homogenization of affine conics

Example 5.14.

1. The affine parabola x− y2 = 0 has homogenization xz − y2 = 0.

This curve meets z = 0 when y2 = 0: at the unique point (1 : 0 : 0).
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The homogenization of affine conics

Example 5.14.

1. The affine parabola x− y2 = 0 has homogenization xz − y2 = 0.

This curve meets z = 0 when y2 = 0: at the unique point (1 : 0 : 0).

2. The affine circle x2 + y2 − 1 = 0 has homogenization x2 + y2 − z2 = 0.

This curve meets z = 0 where x2+y2 = 0: at points (1 : i : 0) and (1 : −i : 0).
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The homogenization of affine conics

Example 5.14.

1. The affine parabola x− y2 = 0 has homogenization xz − y2 = 0.

This curve meets z = 0 when y2 = 0: at the unique point (1 : 0 : 0).

2. The affine circle x2 + y2 − 1 = 0 has homogenization x2 + y2 − z2 = 0.

This curve meets z = 0 where x2+y2 = 0: at points (1 : i : 0) and (1 : −i : 0).

The real projective curve does not meet z = 0. [(0 : 0 : 0) is not a point of
P2(k).]
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The homogenization of affine conics

Example 5.14.

1. The affine parabola x− y2 = 0 has homogenization xz − y2 = 0.

This curve meets z = 0 when y2 = 0: at the unique point (1 : 0 : 0).

2. The affine circle x2 + y2 − 1 = 0 has homogenization x2 + y2 − z2 = 0.

This curve meets z = 0 where x2+y2 = 0: at points (1 : i : 0) and (1 : −i : 0).

The real projective curve does not meet z = 0. [(0 : 0 : 0) is not a point of
P2(k).]

3. The affine hyperbola x2 − y2 − 1 = 0 has homogenization x2 − y2 − z2 = 0.

This curve meets z = 0 where x2 − y2 = 0: at points (1 : 1 : 0) and
(1 : −1 : 0).
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The projective curve with equation xz − y2 = 0 and its dehomgenization with
respect to z = 1.
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The projective curve with equation x2 + y2 − z2 = 0 and its dehomgenization
with respect to z = 1.
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The projective curve with equation x2 − y2 − z2 = 0 and its dehomgenization
with respect to z = 1.
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Intersection of line and curve

Let l be a projective line with parametric form (as + ut : bs + vt : cs + wt), for
s, t ∈ k and let C = Cf be the projective curve with equation f = 0.
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Intersection of line and curve

Let l be a projective line with parametric form (as + ut : bs + vt : cs + wt), for
s, t ∈ k and let C = Cf be the projective curve with equation f = 0.

A point p = (as0 + ut0 : bs0 + vt0 : cs0 + wt0) lies on l and C if and only if

f(as0 + ut0, bs0 + vt0, cs0 + wt0) = 0.
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Intersection of line and curve

Let l be a projective line with parametric form (as + ut : bs + vt : cs + wt), for
s, t ∈ k and let C = Cf be the projective curve with equation f = 0.

A point p = (as0 + ut0 : bs0 + vt0 : cs0 + wt0) lies on l and C if and only if

f(as0 + ut0, bs0 + vt0, cs0 + wt0) = 0.

Definition 5.15. We call the polynomial

φ(s, t) = f(as+ ut, bs+ vt, cs+ wt)

an intersection polynomial of l and C.
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Intersection of line and curve

Let l be a projective line with parametric form (as + ut : bs + vt : cs + wt), for
s, t ∈ k and let C = Cf be the projective curve with equation f = 0.

A point p = (as0 + ut0 : bs0 + vt0 : cs0 + wt0) lies on l and C if and only if

f(as0 + ut0, bs0 + vt0, cs0 + wt0) = 0.

Definition 5.15. We call the polynomial

φ(s, t) = f(as+ ut, bs+ vt, cs+ wt)

an intersection polynomial of l and C.

If p = (as0 + ut0 : bs0 + vt0 : cs0 + wt0) ∈ l the intersection number I(p, f, l)
of C and l at p is the largest integer r such that (t0s− s0t)r|φ(s, t).
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Intersection of line and curve

Let l be a projective line with parametric form (as + ut : bs + vt : cs + wt), for
s, t ∈ k and let C = Cf be the projective curve with equation f = 0.

A point p = (as0 + ut0 : bs0 + vt0 : cs0 + wt0) lies on l and C if and only if

f(as0 + ut0, bs0 + vt0, cs0 + wt0) = 0.

Definition 5.15. We call the polynomial

φ(s, t) = f(as+ ut, bs+ vt, cs+ wt)

an intersection polynomial of l and C.

If p = (as0 + ut0 : bs0 + vt0 : cs0 + wt0) ∈ l the intersection number I(p, f, l)
of C and l at p is the largest integer r such that (t0s− s0t)r|φ(s, t).

Intersection number is independant of choice of parametric form for l.
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Affine and projective intersection numbers

Lemma 5.16. Given a projective curve CF and projective line L let Cf and l
be the dehomogenization of CF and L, respectively, with respect to z = 1.

Let p = (u : v : 1) ∈ A2(k). Then

I(p, f, l) = I(p, F, L).

Similar statements hold for dehomogenization with respect to x = 1 or y = 1
instead of z = 1.
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Number of intersections: line and curve

A field which contains a copy of Zp, for some prime p, is said to have
characteristic p.

A field containing Z is said to have characteristic ∞.

Lemma 5.17. Let C be a projective curve of degree d in P2(k), with equation
F = 0, where k is an algebraically closed field of characteristic greater than d.

Let l be a line such that l * C. Then

∑

p∈l∩C

I(p, F, l) = d.
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Number of intersections: line and curve

A field which contains a copy of Zp, for some prime p, is said to have
characteristic p.

A field containing Z is said to have characteristic ∞.

Lemma 5.17. Let C be a projective curve of degree d in P2(k), with equation
F = 0, where k is an algebraically closed field of characteristic greater than d.

Let l be a line such that l * C. Then

∑

p∈l∩C

I(p, F, l) = d.

Proof. If l * C then φ(s, t) is not the zero polynomial and so is homogeneous of
degree d.

– Typeset by FoilTEX – 106



Number of intersections: line and curve

A field which contains a copy of Zp, for some prime p, is said to have
characteristic p.

A field containing Z is said to have characteristic ∞.

Lemma 5.17. Let C be a projective curve of degree d in P2(k), with equation
F = 0, where k is an algebraically closed field of characteristic greater than d.

Let l be a line such that l * C. Then

∑

p∈l∩C

I(p, F, l) = d.

Proof. If l * C then φ(s, t) is not the zero polynomial and so is homogeneous of
degree d.

Hence the result follows from the proof of Lemma 4.8 and the remark following
Theorem 2.16.
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Multiplicity

Definition 5.18. Let p be a point of a projective curve C with equation f = 0.
We say that p has multiplicity r (on C) if

1. for all non–negative i, j, k such that i+ j + k = r − 1

∂f

∂xiyjzk
(a, b, c) = 0

and

2. for at least one triple of non–negative integers i, j, k with i+ j + k = r

∂f

∂xiyjzk
(a, b, c) 6= 0.
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Multiplicity

Definition 5.18. Let p be a point of a projective curve C with equation f = 0.
We say that p has multiplicity r (on C) if

1. for all non–negative i, j, k such that i+ j + k = r − 1

∂f

∂xiyjzk
(a, b, c) = 0

and

2. for at least one triple of non–negative integers i, j, k with i+ j + k = r

∂f

∂xiyjzk
(a, b, c) 6= 0.

The terms singular, non–singular, simple, double, triple and r–tuple are
defined as in the affine case (see Definition 4.13).
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Example 5.19. Let C be the projective curve with equation x3 − yz2 = 0. Find
the multiplicity of all singular points of C.
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Tangents

Definition 5.20. Let p be an r–tuple point of a projective curve C with
polynomial f . A line l through p is called tangent to C at p if I(p, f, l) > r.
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Tangents

Definition 5.20. Let p be an r–tuple point of a projective curve C with
polynomial f . A line l through p is called tangent to C at p if I(p, f, l) > r.

Theorem 5.21. Let CF be a projective curve with equation F = 0, let f be the
dehomogenization of F (with respect to z = 1) and let Cf be the affine curve
with equation f = 0.

Suppose that p = (u : v : 1) is a point of P2(k).

Then p has multiplicity r on CF if and only if p has multiplicity r on Cf .

Furthermore, the projective line L is tangent to CF at p if and only if the
affine line l is tangent to Cf at p, where l is the dehomogenization of L.

Similar statements hold for dehomogenization with respect to x = 1 or y = 1.
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Example 5.22. Let C be the curve with equation x3−yz2 = 0, as in the previous
example.
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Example 5.22. Let C be the curve with equation x3−yz2 = 0, as in the previous
example.

Example 5.23. Find the tangents to the curve y3 − xz at the points (1 : 0 : 0)
and (0 : 0 : 1).
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Example 5.22. Let C be the curve with equation x3−yz2 = 0, as in the previous
example.

Example 5.23. Find the tangents to the curve y3 − xz at the points (1 : 0 : 0)
and (0 : 0 : 1).

Example 5.24. Find all singular points of the curve x3 + y3 − 3xyz = 0. Find
the multiplicity of each singular point and its tangents.
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Tangent to a simple point

Corollary 5.25. A line l is tangent to a non–singular point p = (a : b : c) of a
projective curve CF if and only if l has equation

xFx(a, b, c) + yFy(a, b, c) + zFz(a, b, c) = 0.
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Tangent to a simple point

Corollary 5.25. A line l is tangent to a non–singular point p = (a : b : c) of a
projective curve CF if and only if l has equation

xFx(a, b, c) + yFy(a, b, c) + zFz(a, b, c) = 0.

Example 5.26.
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Proof of Theorem 5.21

Lemma 5.27. Let F (x, y, z) be a homgeneous polynomial of degree d and let f
be the dehomogenization of f with respect to z = 1. Then

1. Fx is either zero or homogeneous of degree d− 1 and
2. Fx(x, y, 1) = fx(x, y).

Similar statements hold for y or z in place of x.
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Proof of Theorem 5.21

Lemma 5.27. Let F (x, y, z) be a homgeneous polynomial of degree d and let f
be the dehomogenization of f with respect to z = 1. Then

1. Fx is either zero or homogeneous of degree d− 1 and
2. Fx(x, y, 1) = fx(x, y).

Similar statements hold for y or z in place of x.

Corollary 5.28.

1. Fxiyjzk is either zero or homogeneous of degree d− (i+ j + k) and

2. Fxiyj(x, y, 1) = fxiyj(x, y).
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Proof of Theorem 5.21
Lemma 5.27. Let F (x, y, z) be a homgeneous polynomial of degree d and let f
be the dehomogenization of f with respect to z = 1. Then

1. Fx is either zero or homogeneous of degree d− 1 and
2. Fx(x, y, 1) = fx(x, y).

Similar statements hold for y or z in place of x.

Corollary 5.28.

1. Fxiyjzk is either zero or homogeneous of degree d− (i+ j + k) and

2. Fxiyj(x, y, 1) = fxiyj(x, y).

Theorem 5.29 (Euler’s Theorem). Let F (x, y, z) be a homogeneous polynomial
of degree m. Then

mF (x, y, z) = xFx(x, y, z) + yFy(x, y, z) + zFz(x, y, z).
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Proof of Theorem 5.21 continued

We shall prove here that p = (u : v : 1) is a singular point of CF if and only if it
is a singular point of Cf .

The full statement follows from this using an obvious induction and Corollary
5.28: see the exercises.
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Proof of Theorem 5.21 continued

We shall prove here that p = (u : v : 1) is a singular point of CF if and only if it
is a singular point of Cf .

The full statement follows from this using an obvious induction and Corollary
5.28: see the exercises.

By definition p is a singular point of CF if and only if

Fx(u, v, 1) = Fy(u, v, 1) = Fy(u, v, 1) = 0
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Proof of Theorem 5.21 continued

We shall prove here that p = (u : v : 1) is a singular point of CF if and only if it
is a singular point of Cf .

The full statement follows from this using an obvious induction and Corollary
5.28: see the exercises.

By definition p is a singular point of CF if and only if

Fx(u, v, 1) = Fy(u, v, 1) = Fy(u, v, 1) = 0

⇐⇒ F (u, v, 1) = Fx(u, v, 1) = Fy(u, v, 1) = 0 (using Euler’s Theorem)
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Proof of Theorem 5.21 continued

We shall prove here that p = (u : v : 1) is a singular point of CF if and only if it
is a singular point of Cf .

The full statement follows from this using an obvious induction and Corollary
5.28: see the exercises.

By definition p is a singular point of CF if and only if

Fx(u, v, 1) = Fy(u, v, 1) = Fy(u, v, 1) = 0

⇐⇒ F (u, v, 1) = Fx(u, v, 1) = Fy(u, v, 1) = 0 (using Euler’s Theorem)

⇐⇒ f(u, v) = fx(u, v) = fy(u, v) = 0 (using Lemma 5.27)
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Proof of Theorem 5.21 continued

We shall prove here that p = (u : v : 1) is a singular point of CF if and only if it
is a singular point of Cf .

The full statement follows from this using an obvious induction and Corollary
5.28: see the exercises.

By definition p is a singular point of CF if and only if

Fx(u, v, 1) = Fy(u, v, 1) = Fy(u, v, 1) = 0

⇐⇒ F (u, v, 1) = Fx(u, v, 1) = Fy(u, v, 1) = 0 (using Euler’s Theorem)

⇐⇒ f(u, v) = fx(u, v) = fy(u, v) = 0 (using Lemma 5.27)

⇐⇒ p is a singular point of Cf .
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Proof of Theorem 5.21 continued

We shall prove here that p = (u : v : 1) is a singular point of CF if and only if it
is a singular point of Cf .

The full statement follows from this using an obvious induction and Corollary
5.28: see the exercises.

By definition p is a singular point of CF if and only if

Fx(u, v, 1) = Fy(u, v, 1) = Fy(u, v, 1) = 0

⇐⇒ F (u, v, 1) = Fx(u, v, 1) = Fy(u, v, 1) = 0 (using Euler’s Theorem)

⇐⇒ f(u, v) = fx(u, v) = fy(u, v) = 0 (using Lemma 5.27)

⇐⇒ p is a singular point of Cf .

The statement concerning tangents follows from Lemma 5.16 and Theorem 4.19.
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Asymptotes

Definition 5.30. Let Cf be an affine curve and let F be the homogenization
of f .

Let L be a projective line tangent to CF at some point p on the line z = 0.

If L is not itself the line z = 0 then the dehomogenization l of L is called an
asymptote to Cf .
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Asymptotes

Definition 5.30. Let Cf be an affine curve and let F be the homogenization
of f .

Let L be a projective line tangent to CF at some point p on the line z = 0.

If L is not itself the line z = 0 then the dehomogenization l of L is called an
asymptote to Cf .

Example 5.32. Let f = x3 − y and so F = x3 − yz2.
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The real curve with equation x3 − y = 0
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The real curve with equation x3 − z2 = 0
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The real curve with equation 1− yz2 = 0 and its asymptotes
y = 0 and z = 0
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Bézout’s Theorem

Theorem 6.1. If C and D are projective curves then C and D meet in at least
one point.
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Bézout’s Theorem

Theorem 6.1. If C and D are projective curves then C and D meet in at least
one point.

Theorem 6.2 (Weak form of Bézout’s Theorem). Let C and D be two
projective curves of degrees m and n, respectively. If C and D have no common
component then their intersection C ∩D contains at most mn points.
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Bézout’s Theorem

Theorem 6.1. If C and D are projective curves then C and D meet in at least
one point.

Theorem 6.2 (Weak form of Bézout’s Theorem). Let C and D be two
projective curves of degrees m and n, respectively. If C and D have no common
component then their intersection C ∩D contains at most mn points.

Corollary 6.3.

1. A non–singular projective curve is irreducible.

2. An irreducible projective curve has finitely many singular points.
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Inflexions
Definition 7.1. A point p of a projective curve CF is called an inflexion if

1. p is non–singular and

2. the tangent l to C at p satisfies I(p, F, l) ≥ 3.
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Inflexions
Definition 7.1. A point p of a projective curve CF is called an inflexion if

1. p is non–singular and

2. the tangent l to C at p satisfies I(p, F, l) ≥ 3.

Example 7.2. Let F be the polynomial y3−xz2 and C the curve with polynomial
F .
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The Hessian

Definition 7.3. Let F be a non–constant homogeneous polynomial. The
Hessian of F is

HF =

∣

∣

∣

∣
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Fyx Fyy Fyz
Fzx Fzy Fzz
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.
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The Hessian

Definition 7.3. Let F be a non–constant homogeneous polynomial. The
Hessian of F is

HF =
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.

Note that if F has degree d ≥ 2 then HF is a homogeneous polynomial of degree
3(d− 2).

– Typeset by FoilTEX – 120



The affine version of the Hessian

Lemma 7.4. Suppose F has degree d ≥ 1. Then

z2HF = (d− 1)2
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The affine version of the Hessian

Lemma 7.4. Suppose F has degree d ≥ 1. Then

z2HF = (d− 1)2
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)

F
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Proof. Multiply row 3 of the matrix in the definition of HF by z. Then multiply
column 3 by z. The result is

z2HF =

∣

∣
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∣

∣

∣

∣

Fxx Fxy zFxy
Fyx Fyy zFyz
zFzx zFzy z2Fzz
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.
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Now add x · (row 1) + y · (row 2) to row 3.

Euler’s Theorem for the degree d− 1 polynomial Fx is

(d− 1)Fx = xFxx + yFyx + zFzx,
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Now add x · (row 1) + y · (row 2) to row 3.

Euler’s Theorem for the degree d− 1 polynomial Fx is

(d− 1)Fx = xFxx + yFyx + zFzx,

so we obtain

z2HF =

∣

∣
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Fxx Fxy zFxy
Fyx Fyy zFyz

(d− 1)Fx (d− 1)Fy z(d− 1)Fz
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Now add x · (row 1) + y · (row 2) to row 3.

Euler’s Theorem for the degree d− 1 polynomial Fx is

(d− 1)Fx = xFxx + yFyx + zFzx,

so we obtain

z2HF =

∣

∣

∣

∣

∣

∣

∣

Fxx Fxy zFxy
Fyx Fyy zFyz

(d− 1)Fx (d− 1)Fy z(d− 1)Fz

∣

∣

∣

∣

∣

∣

∣

.

Adding x · (column 1) + y · (column 2) to column 3, and using Euler’s theorem
again, gives the required result.
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Inflexions and the Hessian

Theorem 7.5. Let F have degree at least 2. A point p = (u : v : w) of the
curve CF is an inflexion if and only if

1. p is non–singular and

2. HF (u, v, w) = 0.
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Inflexions and the Hessian

Theorem 7.5. Let F have degree at least 2. A point p = (u : v : w) of the
curve CF is an inflexion if and only if

1. p is non–singular and

2. HF (u, v, w) = 0.

Proof. Assume that p has coordinates (u : v : 1). (The other cases follow using
a similar argument.)

Define f(x, y) = F (x, y, 1) and let q = (u, v), so q ∈ Cf .
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Inflexions and the Hessian

Theorem 7.5. Let F have degree at least 2. A point p = (u : v : w) of the
curve CF is an inflexion if and only if

1. p is non–singular and

2. HF (u, v, w) = 0.

Proof. Assume that p has coordinates (u : v : 1). (The other cases follow using
a similar argument.)

Define f(x, y) = F (x, y, 1) and let q = (u, v), so q ∈ Cf .

Then from Theorem 5.21 and Lemma 5.16 it follows that p is an inflexion of CF
if and only if q is a non–singular point of Cf and the tangent l to Cf at q satisfies
I(q, f, l) ≥ 3.
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Inflexions and the Hessian

Theorem 7.5. Let F have degree at least 2. A point p = (u : v : w) of the
curve CF is an inflexion if and only if

1. p is non–singular and

2. HF (u, v, w) = 0.

Proof. Assume that p has coordinates (u : v : 1). (The other cases follow using
a similar argument.)

Define f(x, y) = F (x, y, 1) and let q = (u, v), so q ∈ Cf .

Then from Theorem 5.21 and Lemma 5.16 it follows that p is an inflexion of CF
if and only if q is a non–singular point of Cf and the tangent l to Cf at q satisfies
I(q, f, l) ≥ 3.

It therefore suffices to show that, given q is non–singular, then I(q, f, l) ≥ 3 if
and only if HF (u, v, 1) = 0.
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Write fx = fx(u, v) and fy = fy(u, v) and similarly for higher order derivatives.

Then, using Definition 4.16, the tangent l to Cf at q is the line with parametric
form (as+ u, bs+ v), s ∈ k, where

afx + bfy = 0.
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Write fx = fx(u, v) and fy = fy(u, v) and similarly for higher order derivatives.

Then, using Definition 4.16, the tangent l to Cf at q is the line with parametric
form (as+ u, bs+ v), s ∈ k, where

afx + bfy = 0.

This has solution a = −fy and b = fx.

Set a = −fy and b = fx.
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Write fx = fx(u, v) and fy = fy(u, v) and similarly for higher order derivatives.

Then, using Definition 4.16, the tangent l to Cf at q is the line with parametric
form (as+ u, bs+ v), s ∈ k, where

afx + bfy = 0.

This has solution a = −fy and b = fx.

Set a = −fy and b = fx.

Now I(q, f, l) is the largest integer r such that sr|f(as+ u, bs+ v) and

f(as+ u, bs+ v) = f(u, v)

+ s(afx + bfy)

+
s2

2!
(a2fxx + 2abfxy + b2fyy)+s3R(s),

where R(s) is a polynomial.
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As q ∈ Cf so f(u, v) = 0 and we have

f(as+ u, bs+ v) =
s2

2!
(a2fxx + 2abfxy + b2fyy) + s3R(s).
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As q ∈ Cf so f(u, v) = 0 and we have

f(as+ u, bs+ v) =
s2

2!
(a2fxx + 2abfxy + b2fyy) + s3R(s).

Thus

I(q, f, l) ≥ 3 if and only if a2fxx + 2abfxy + b2fyy = 0. (7.1)
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As q ∈ Cf so f(u, v) = 0 and we have

f(as+ u, bs+ v) =
s2

2!
(a2fxx + 2abfxy + b2fyy) + s3R(s).

Thus

I(q, f, l) ≥ 3 if and only if a2fxx + 2abfxy + b2fyy = 0. (7.1)

As p ∈ CF we have, using Lemma 7.4

HF (u, v, 1) = (d− 1)2
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As q ∈ Cf so f(u, v) = 0 and we have

f(as+ u, bs+ v) =
s2

2!
(a2fxx + 2abfxy + b2fyy) + s3R(s).

Thus

I(q, f, l) ≥ 3 if and only if a2fxx + 2abfxy + b2fyy = 0. (7.1)

As p ∈ CF we have, using Lemma 7.4

HF (u, v, 1) = (d− 1)2
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Furthermore Fx(u, v, 1) = fx(u, v) and similarly for all the other partial derivatives
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(of first and higher orders).
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Thus

HF (u, v, 1) = (d− 1)2
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= (d− 1)2[−f2
xfyy + 2fxfyfxy − f2

yfxx]
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Thus

HF (u, v, 1) = (d− 1)2
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fxx fxy fx
fyx fyy fy
fx fy 0
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∣

= (d− 1)2[−f2
xfyy + 2fxfyfxy − f2

yfxx]

= (d− 1)2[−b2fyy − 2abfxy − a2fxx].
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Thus

HF (u, v, 1) = (d− 1)2
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∣
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fxx fxy fx
fyx fyy fy
fx fy 0

∣
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∣
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∣

= (d− 1)2[−f2
xfyy + 2fxfyfxy − f2

yfxx]

= (d− 1)2[−b2fyy − 2abfxy − a2fxx].

Hence
HF (u, v, 1) = 0 if and only if (7.1) holds.
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Thus

HF (u, v, 1) = (d− 1)2
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∣

fxx fxy fx
fyx fyy fy
fx fy 0

∣
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∣

∣

∣

∣

∣

= (d− 1)2[−f2
xfyy + 2fxfyfxy − f2

yfxx]

= (d− 1)2[−b2fyy − 2abfxy − a2fxx].

Hence
HF (u, v, 1) = 0 if and only if (7.1) holds.

Thus p is an inflexion if and only if q is non–singular and I(q, f, l) ≥ 3 which is
true if and only if p is non–singular and HF (u, v, 1) = 0.
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Thus

HF (u, v, 1) = (d− 1)2
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fxx fxy fx
fyx fyy fy
fx fy 0

∣
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∣
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∣

∣

= (d− 1)2[−f2
xfyy + 2fxfyfxy − f2

yfxx]

= (d− 1)2[−b2fyy − 2abfxy − a2fxx].

Hence
HF (u, v, 1) = 0 if and only if (7.1) holds.

Thus p is an inflexion if and only if q is non–singular and I(q, f, l) ≥ 3 which is
true if and only if p is non–singular and HF (u, v, 1) = 0.

This completes the proof of the Theorem.
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Example 7.6. Find all the inflexions of CF , where F = x3 + y3 − 3xyz.
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Cubics and lines

A curve of degree 3 is a cubic.
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Cubics and lines

A curve of degree 3 is a cubic.

A non–singular cubic in P2(k) (where k is algebraically closed) has exactly nine
inflexions.
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Cubics and lines

A curve of degree 3 is a cubic.

A non–singular cubic in P2(k) (where k is algebraically closed) has exactly nine
inflexions.

Theorem 8.1. Let C be a non–singular projective cubic with equation F = 0
and let l be a line. Then the intersection of l and C consists of either

1. 3 distinct points p1, p2 and p3 with I(pi, F, l) = 1, for i = 1, 2, 3, so that l
is not tangent to C at pi; or

2. 2 distinct points p1 and p2 with I(p1, F, l) = 1 and I(p2, F, l) = 2 so that l
is tangent to C at p2 but not at p1; or

3. 1 point p with I(p, F, l) = 3 so l is tangent to C at p and p is an inflexion.
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Cubics and lines

A curve of degree 3 is a cubic.

A non–singular cubic in P2(k) (where k is algebraically closed) has exactly nine
inflexions.

Theorem 8.1. Let C be a non–singular projective cubic with equation F = 0
and let l be a line. Then the intersection of l and C consists of either

1. 3 distinct points p1, p2 and p3 with I(pi, F, l) = 1, for i = 1, 2, 3, so that l
is not tangent to C at pi; or

2. 2 distinct points p1 and p2 with I(p1, F, l) = 1 and I(p2, F, l) = 2 so that l
is tangent to C at p2 but not at p1; or

3. 1 point p with I(p, F, l) = 3 so l is tangent to C at p and p is an inflexion.

Proof. This follows from Lemma 5.17.
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The group law on the cubic

The line through A and B is AB.

CF is a non–singular projective cubic

O is an inflexion of C.
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The group law on the cubic

The line through A and B is AB.

CF is a non–singular projective cubic

O is an inflexion of C.

Definition 8.2. Given X ∈ C let X denote the third point of intersection of OX
with C (where intersections are counted according to intersection number).
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The group law on the cubic

The line through A and B is AB.

CF is a non–singular projective cubic

O is an inflexion of C.

Definition 8.2. Given X ∈ C let X denote the third point of intersection of OX
with C (where intersections are counted according to intersection number).

O = O, because O is an inflexion.
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The group law on the cubic

The line through A and B is AB.

CF is a non–singular projective cubic

O is an inflexion of C.

Definition 8.2. Given X ∈ C let X denote the third point of intersection of OX
with C (where intersections are counted according to intersection number).

O = O, because O is an inflexion.

Definition 8.3. Given points P,Q ∈ C we define a point P +Q of C as follows.
First let X be the third point of intersection of PQ with C. Now set P+Q = X.
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The group law on the cubic

The line through A and B is AB.

CF is a non–singular projective cubic

O is an inflexion of C.

Definition 8.2. Given X ∈ C let X denote the third point of intersection of OX
with C (where intersections are counted according to intersection number).

O = O, because O is an inflexion.

Definition 8.3. Given points P,Q ∈ C we define a point P +Q of C as follows.
First let X be the third point of intersection of PQ with C. Now set P+Q = X.

Theorem 8.4. The set of points of C with the operation of addition defined
above forms an Abelian group.
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Proof of Theorem 8.4

It follows from Theorem 8.1 that P +Q is a unique point of C.

Therefore the given operation of addition is a binary operation on the set of
points of C.
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Proof of Theorem 8.4

It follows from Theorem 8.1 that P +Q is a unique point of C.

Therefore the given operation of addition is a binary operation on the set of
points of C.

We need to check that it has an identity, that there are inverses, that it is
associative and that it is commutative.
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Proof of Theorem 8.4

It follows from Theorem 8.1 that P +Q is a unique point of C.

Therefore the given operation of addition is a binary operation on the set of
points of C.

We need to check that it has an identity, that there are inverses, that it is
associative and that it is commutative.

Identity: The point O is the identity element.

To see this suppose that P is a point of C. We must show that P +O = P =
O + P .
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Proof of Theorem 8.4

It follows from Theorem 8.1 that P +Q is a unique point of C.

Therefore the given operation of addition is a binary operation on the set of
points of C.

We need to check that it has an identity, that there are inverses, that it is
associative and that it is commutative.

Identity: The point O is the identity element.

To see this suppose that P is a point of C. We must show that P +O = P =
O + P .

Let X be the third point of intersection of PO and C.
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Proof of Theorem 8.4

It follows from Theorem 8.1 that P +Q is a unique point of C.

Therefore the given operation of addition is a binary operation on the set of
points of C.

We need to check that it has an identity, that there are inverses, that it is
associative and that it is commutative.

Identity: The point O is the identity element.

To see this suppose that P is a point of C. We must show that P +O = P =
O + P .

Let X be the third point of intersection of PO and C.

Now we have the line PO passing through O, P and X.
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Proof of Theorem 8.4

It follows from Theorem 8.1 that P +Q is a unique point of C.

Therefore the given operation of addition is a binary operation on the set of
points of C.

We need to check that it has an identity, that there are inverses, that it is
associative and that it is commutative.

Identity: The point O is the identity element.

To see this suppose that P is a point of C. We must show that P +O = P =
O + P .

Let X be the third point of intersection of PO and C.

Now we have the line PO passing through O, P and X.

By definition P +O = X, the third point of intersection of OX with C. That
is P +O = P .
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Proof of Theorem 8.4

It follows from Theorem 8.1 that P +Q is a unique point of C.

Therefore the given operation of addition is a binary operation on the set of
points of C.

We need to check that it has an identity, that there are inverses, that it is
associative and that it is commutative.

Identity: The point O is the identity element.

To see this suppose that P is a point of C. We must show that P +O = P =
O + P .

Let X be the third point of intersection of PO and C.

Now we have the line PO passing through O, P and X.

By definition P +O = X, the third point of intersection of OX with C. That
is P +O = P .

Similarly O + P = P , so O is the identity as claimed.
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Inverse: Let P be a point of C. Then P is the third point of intersection of OP
and C.
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Inverse: Let P be a point of C. Then P is the third point of intersection of OP
and C.

Thus PP passes through O, P and P .
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Inverse: Let P be a point of C. Then P is the third point of intersection of OP
and C.

Thus PP passes through O, P and P .

It follows that P + P = O = O.
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Inverse: Let P be a point of C. Then P is the third point of intersection of OP
and C.

Thus PP passes through O, P and P .

It follows that P + P = O = O.

Similarly P + P = O. Hence the inverse of P is P .
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Inverse: Let P be a point of C. Then P is the third point of intersection of OP
and C.

Thus PP passes through O, P and P .

It follows that P + P = O = O.

Similarly P + P = O. Hence the inverse of P is P .

Associative: This is the only group axiom that is non–trivial to check and we
omit it.
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Inverse: Let P be a point of C. Then P is the third point of intersection of OP
and C.

Thus PP passes through O, P and P .

It follows that P + P = O = O.

Similarly P + P = O. Hence the inverse of P is P .

Associative: This is the only group axiom that is non–trivial to check and we
omit it.

Commutative: The line PQ is the same as the line QP so P +Q = Q+ P .
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Example 8.5. F = x3 + y3 − z3.

Fx = 3x2, Fy = 3y2 and Fz = −3z2.
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Example 8.5. F = x3 + y3 − z3.

Fx = 3x2, Fy = 3y2 and Fz = −3z2.

As Fx = Fy = Fz = 0 implies x = y = z = 0 the curve is non–singular.
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Example 8.5. F = x3 + y3 − z3.

Fx = 3x2, Fy = 3y2 and Fz = −3z2.

As Fx = Fy = Fz = 0 implies x = y = z = 0 the curve is non–singular.

Fxx = 6x, Fyy = 6y, Fzz = −6z and Fxy = Fxz = Fyz = 0.

HF =

∣

∣

∣

∣

∣

∣

6x 0 0
0 6y 0
0 0 −6z

∣

∣

∣

∣

∣

∣

= −63xyz.
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Example 8.5. F = x3 + y3 − z3.

Fx = 3x2, Fy = 3y2 and Fz = −3z2.

As Fx = Fy = Fz = 0 implies x = y = z = 0 the curve is non–singular.

Fxx = 6x, Fyy = 6y, Fzz = −6z and Fxy = Fxz = Fyz = 0.

HF =

∣

∣

∣

∣

∣

∣

6x 0 0
0 6y 0
0 0 −6z

∣

∣

∣

∣

∣

∣

= −63xyz.

HF = 0 if and only if x = 0, y = 0 or z = 0.
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When x = 0

In this case F (0, y, z) = y3 − z3 = 0.
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When x = 0

In this case F (0, y, z) = y3 − z3 = 0.

Assume y = 1 and find z by solving 1− z3 = 0.

z = 1, ω or ω2,

where ω3 = 1 and ω 6= 1.
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When x = 0

In this case F (0, y, z) = y3 − z3 = 0.

Assume y = 1 and find z by solving 1− z3 = 0.

z = 1, ω or ω2,

where ω3 = 1 and ω 6= 1.

Points of inflexion with x = 0:

(0 : 1 : 1), (0 : 1 : ω) and (0 : 1 : ω2).
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When y = 0

In this case F (x, 0, z) = x3 − z3 = 0.
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When y = 0

In this case F (x, 0, z) = x3 − z3 = 0.

Assume z = 1 and find x by solving x3 − 1 = 0.

x = 1, ω, or ω2,

where ω3 = 1 and ω 6= 1.
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When y = 0

In this case F (x, 0, z) = x3 − z3 = 0.

Assume z = 1 and find x by solving x3 − 1 = 0.

x = 1, ω, or ω2,

where ω3 = 1 and ω 6= 1.

Points of inflexion with y = 0:

(1 : 0 : 1), (1 : 0 : ω) and (1 : 0 : ω2).
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When z = 0

In this case F (x, y, 0) = x3 + y3 = 0.
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When z = 0

In this case F (x, y, 0) = x3 + y3 = 0.

Assume x = 1 and find y by solving 1 + y3 = 0.

y = −1, −ω or − ω2,

where ω3 = 1 and ω 6= 1.
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When z = 0

In this case F (x, y, 0) = x3 + y3 = 0.

Assume x = 1 and find y by solving 1 + y3 = 0.

y = −1, −ω or − ω2,

where ω3 = 1 and ω 6= 1.

Points of inflexion with z = 0:

(1 : −1 : 0), (1 : −ω : 0) and (1 : −ω2 : 0).
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There are a total of nine inflexions as expected.
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There are a total of nine inflexions as expected.

The inflexions on the real curve at (0 : 1 : 1) and (1 : 0 : 1) can be shown by
dehomogenizing with respect to z = 1.
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There are a total of nine inflexions as expected.

The inflexions on the real curve at (0 : 1 : 1) and (1 : 0 : 1) can be shown by
dehomogenizing with respect to z = 1.

This gives the affine curve x3 + y3 − 1 = 0 with inflexions at (0, 1) and (1, 0)
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There are a total of nine inflexions as expected.

The inflexions on the real curve at (0 : 1 : 1) and (1 : 0 : 1) can be shown by
dehomogenizing with respect to z = 1.

This gives the affine curve x3 + y3 − 1 = 0 with inflexions at (0, 1) and (1, 0)
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The inflexions at (0 : 1 : 1) and (−1 : 1 : 0) = (1 : −1 : 0) can be seen by
dehomogenizing with respect to y = 1.
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The inflexions at (0 : 1 : 1) and (−1 : 1 : 0) = (1 : −1 : 0) can be seen by
dehomogenizing with respect to y = 1.

This gives the affine curve x3 + 1− z3 = 0 with inflexions at (0, 1) and (−1, 0).
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The inflexions at (0 : 1 : 1) and (−1 : 1 : 0) = (1 : −1 : 0) can be seen by
dehomogenizing with respect to y = 1.

This gives the affine curve x3 + 1− z3 = 0 with inflexions at (0, 1) and (−1, 0).
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The group law on C with base point O = (0 : 1 : 1)

P = (1 : 0 : ω) and Q = (1 : −ω2 : 0).

We shall compute P +Q.
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The group law on C with base point O = (0 : 1 : 1)

P = (1 : 0 : ω) and Q = (1 : −ω2 : 0).

We shall compute P +Q.

The line PQ has parametric form (s+ t : −ω2t : ωs), for s, t ∈ k.
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The group law on C with base point O = (0 : 1 : 1)

P = (1 : 0 : ω) and Q = (1 : −ω2 : 0).

We shall compute P +Q.

The line PQ has parametric form (s+ t : −ω2t : ωs), for s, t ∈ k.

φ(s, t) = (s+ t)3 + (−ω2t)3 − (ωs)3 = 3s2t+ 3st2 = 3st(s+ t).
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The group law on C with base point O = (0 : 1 : 1)

P = (1 : 0 : ω) and Q = (1 : −ω2 : 0).

We shall compute P +Q.

The line PQ has parametric form (s+ t : −ω2t : ωs), for s, t ∈ k.

φ(s, t) = (s+ t)3 + (−ω2t)3 − (ωs)3 = 3s2t+ 3st2 = 3st(s+ t).

Thus φ(s, t) = 0 if s = 0, t = 0 or s+ t = 0.
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The group law on C with base point O = (0 : 1 : 1)

P = (1 : 0 : ω) and Q = (1 : −ω2 : 0).

We shall compute P +Q.

The line PQ has parametric form (s+ t : −ω2t : ωs), for s, t ∈ k.

φ(s, t) = (s+ t)3 + (−ω2t)3 − (ωs)3 = 3s2t+ 3st2 = 3st(s+ t).

Thus φ(s, t) = 0 if s = 0, t = 0 or s+ t = 0.

The zeros s = 0 and t = 0 correspond to P and Q.
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The third point of intersection of PQ with C is X, corresponding to s+ t = 0 so

X = (0 : ω2 : ω) = (0 : 1 : ω2).
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The third point of intersection of PQ with C is X, corresponding to s+ t = 0 so

X = (0 : ω2 : ω) = (0 : 1 : ω2).

As O and X both have x–coordinate 0 it follows that the line OX is x = 0.
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The third point of intersection of PQ with C is X, corresponding to s+ t = 0 so

X = (0 : ω2 : ω) = (0 : 1 : ω2).

As O and X both have x–coordinate 0 it follows that the line OX is x = 0.

This line meets C at O, X and X = (0 : 1 : ω). Hence

P +Q = (0 : 1 : ω).
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