
MAS345 Algebraic Geometry of Curves: Exercises

AJ Duncan, September 22, 2003

1 Drawing Curves

In this section of the exercises some methods of visualising curves in R2 are investigated.
All the curves below consist of the set of points (x, y) ∈ R such that f(x, y) = 0, where
f(x, y) is a given polynomial.

Parametrization

We use the fact that every point of R2 is on a line with equation y = tx, for some t ∈ R
or on the line x = 0.

Consider the curve C with equation

x6 − x2y3 − y5 = 0.

Given t ∈ R we can find the points of intersection of C with the line y = tx by substituting
tx for y wherever it occurs in the equation for C. This gives

x6 − x2(tx)3 − (tx)5 = x6 − t3x5 − t5x5 = x5(x− t3 − t5) = 0.

Therefore (if x 6= 0) points on the intersection have x–coordinate x = t3 + t5. As these
points are on the line y = tx they also have y–coordinate y = t4 + t6. Thus these points are
of the form (t3 + t5, t4 + t6). Varying t we obtain all points of the curve C, except possibly
those on x = 0. The only point on x = 0 is (0, 0) and this is of the same form with t = 0.
Thus the curve consists of all points

(t3 + t5, t4 + t6), t ∈ R.

We can use maple to draw this curve as follows. First we need to load the plots package,
to enable us to make parametric plots.

> with(plots):

Next we set global options to make the plots look better:

>setoptions(numpoints=500,thickness=8,xtickmarks=3,ytickmarks=3,

axesfont=[TIMES,ROMAN,32]);

Now we can make a parametric plot of the curve:

>plot([t^3+t^5,t^4+t^6,t=-infinity..infinity],-2..2,-2..2);
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To see what happens near the origin try reducing the horizontal and vertical ranges:

>plot([t^3+t^5,t^4+t^6,t=-infinity..infinity],-0.1..0.1,-0.1..0.1);
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0

0.1

–0.1 0.1

Exercise 1.1 Use the same method to show that every point of the curve C with equation

x7 − x2y4 − y6 = 0,

is of the form
(t4 + t6, t5 + t7), t ∈ R.

Use this to make a parametric plot of the curve. Label the drawing “Exercise 1.1” add
your name and print out your maple commands and the plot to hand in. (Or save them
for printing later.)
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A family of curves parametrized

There is a family of curves with equations

x(x− α)2 + y2(1− α + x) = 0,

where α is a real number: each value of α gives a curve or member of the family. The
points of these curves are of the form

(x, y), where x =
(α− 1)t2

1 + t2
and y =

(α + t2)t

1 + t2
, t ∈ R.

(Details of this parametrization and further characterisations of this family can be found
on pages 6 and 7 of the recommended book by Gibson.) Again, we use maple to plot
some of these curves. To plot the curve with α = 0: (remember to give the command
with(plots): if you have not already done so)

>plot([(0-1)*t^2/(1+t^2),(0+t^2)*t/(1+t^2),t=-infinity..infinity],

-2..2,-2..2);
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and with α = −2:

>plot([(-2-1)*t^2/(1+t^2),(-2+1*t^2)*t/(1+t^2),t=-infinity..infinity],

-4..4,-4..4);
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Exercise 1.2. Make plots of these curves for α = −5,−1,−0.1, 0, 0.1, 1 and 5. Save your
work, print it and hand it in.

Epicyclic curves

Let R and r be positive real numbers and m and n be integers with n 6= 0. It is possible
to show that if we take all points of the form

x = R cos(mφ)± r cos(nφ) and y = R sin(mφ)± r sin(nφ),

where φ ∈ R then the set of points we obtain is a curve (there is a polynomial equation for
these points). Details can be found in the book “Plane Algebraic Curves” by E Brieskorn
& H Knörrer, pages 19–24 and 77–78. We can use maple to find these points. Here is the
case R = 5, r = 11, m = 11 and n = 5.

>plot([5*cos(11*s)+11*cos(5*s),5*sin(11*s)+11*sin(5*s),s=0..2*Pi]);

–10

0

10

–10 10

Exercise 1.3. Make plots of these curves for the cases (a) R = 6, r = 11, m = 11 and
n = 5 and (b) R = 12, r = 11, m = 11 and n = 5. Save your work, print it and hand it in.
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Epicyclic curves: the movie

We can plot a sequence of Epicylic curves and animate them. Here is an animation
taking R from −11 to 11 with r = 11, m = 11 and n = 5. We first make a sequence of
plots: end the line with a colon or Maple will output the sequence.

>t:=seq(plot([R*cos(11*s)+11*cos(5*s),R*sin(11*s)+11*sin(5*s),

s=0..2*Pi]),R=-11..11):

Now we can display the sequence. Before doing so click “Options” on the menu, choose
“Plot display” and change it to “Window”. Now type:

>display(t,insequence=true);

In addition to a window you should see a new menu bar with playback controls. Press the
forward arrow to play the animation. Click on the question mark at the left of the menu
bar and you should get controls allowing you to adjust the playback speed.
Exercise 1.4. Type in the Maple commands to animate the epicylcic curves with r = 1,
n = 1 and R = m, letting R range from −3 to 3. Save these commands, print and hand
in.

Implicit Plots

Maple supports another method of plotting real algebraic curves, which also requires
with(plots), namely implicitplot. Implicitplot finds some points on the curve and then
interpolates. If the curve has no singularities this works well. It is easier to apply than
the method above and in any case some curves cannot be parametrized. Here is how the
curve with equation x6 − x2y3 − y5 = 0, plotted above, looks using this method:

>implicitplot(x^6-x^2*y^3-y^5=0,x=-2..2,y=-2..2);
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This is much rougher, near the origin, than the parametric plot we obtained before.
The next two curves we plotted above were those with equations x3 + y2(1 + x) = 0 and
x(x + 2)2 + y2(3 + x) = 0. Here are implicit plots of these curves. The number of points
plotted has been increased to improve the plot quality.

>implicitplot(x^3+y^2*(1+x)=0,x=-6..6,y=-6..6,numpoints=1000,xtickmarks=0);
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>implicitplot(x*(x+2)^2+y^2*(3+x)=0,x=-6..6,y=-6..6,numpoints=1000,

xtickmarks=0);
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These both give reasonable pictures of the curves except at the points where they’re
not smooth.
Exercise 1.5. Use implicitplot to draw the curves of Excercises 1 and 2 and compare the
results to the originals. Save, print and hand in.
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2 Polynomials

2.1 Write down the sum f + g and product fg of the following polynomials and simplify
as much as possible. You may find Maple takes some of the drudgery out of this.

(a) f = 3x3 + xy + 2, g = xy2 + x11 − 7;

(b) f = xyz + x3y2z + z17 + yz2, g = y21z1223 − 2x10y10z10;

(c) f = z + 2− 21x432y221 + x+ xy + xyz, g = x3(y3 − z3).

2.2 Find all roots of the following polynomials in x over the fields R, Z2, Z3, Z5 and C.
(a) x2−1; (b) x3−1; (c) x4−1; (d) x5−1; (e) x2−3; (f) x3−3; (g) x4−3; (h) x5−3.

2.3 Let ω ∈ k such that ω3 = 1. Show that if ω 6= 1 then ω2 + ω + 1 = 0. Use this to
show that if k = C then

ω =
−1± i

√
3

2
.

Now show that if ωn = 1, where n > 1, then ω = 1 or ωn−1 + · · ·+ ω + 1 = 0.

2.4 A polynomial f(x1, · · · , xr) ∈ k[x1, · · · , xr] is said to be homogeneous of degree d if
all its terms have degree d. Which of the following are homogeneous.

(a) 7x2y2z10 + 8x14 − z14;

(b) 11xz − 11x+ 11− 11y − 11yz;

(c) 33z44 − 44y33;

(d) 44;

(e) x+ xy + xyz;

(f) 1 + 2x+ 3y + 4z + 5x2 + 6xy + 7xz + 8yz + 9y2 + 10z2 + 11x3 + 12y3 + 13z3 +
14x2y + 15x2z + 16xy2 + 17xyz + 18xz2 + 19y2z + 20yz2;

(g) x33 − 44y33 − 33xy32 − 32x2y31.

Write each of the above polynomials in the form F0 + F1 + · · · + Fd, where Fi is a
homogeneous polynomial of degree i: make clear what the Fi’s are in each case.

2.5 First verify the following fact for each of the homogeneous polynomials in the previous
question. Then prove it. A polynomial is homogeneous of degree d if and only if

tdf(x1, · · · , xr) = f(tx1, · · · , txr),

as elements of k[x1, · · · , xr, t].

2.6 Let Fm and Gn be homogeneous polynomials, of degree m and n respectively, in
k[x1, · · · , xr].

(a) Show that FmGn is a homogeneous polynomial of degree m+ n.
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(b) If f and g are elements of k[x1, · · · , xr] show that

i. degree(f + g) ≤ max{degree(f), degree(g)}
ii. degree(fg) = degree(f) + degree(g).

(Hint: If fg 6= 0 write f = F0 + · · ·+ Fm and g = G0 + · · ·+Gn, where Fi
and Gi are homogeneous of degree i and Fm 6= 0, Gn 6= 0.)

2.7 Let f ∈ k[x, y, z] be a homogeneous polynomial of degree d ≥ 0. If g|f , where
g ∈ k[x, y, z], show that g is homogeneous. [Hint: If f = gh, write g = G1 + · · ·+Gs

and h = H1 + · · · + Ht, where Gi and Hi are homogeneous of degrees mi and ni,
respectively. Then f = gh = G1H1 + · · · + GsHt. Now use the fact that f is
homogeneous of degree d.]

2.8 Let c 6= 0 be a complex number. Show that

(a) x2 + y2 + c and

(b) x3 + y3 + cxy.

are irreducible polynomials in C[x, y].

2.9 Show that the following polynomials are irreducible over C.

(a) y2 − x3 − x2 − 1;

(b) y2 − x3 + x;

(c) y2 − x3 − x2.

3 Affine Lines

3.1 Let k be the field Z5.

(a) Find all points of the line l with equation x+ 3y + 1 = 0 in A2(k).

(b) As k is a field you should be able to rearrange the equation of l as y = mx+ c,
for some m, c ∈ k. Do so and check your answer to 3.1a.

(c) Plot the curve C with equation x3 − y = 0 in A2(k) and find its intersection
with l.

(d) Substitute mx+ c for y, using the m and c found in 3.1b, into the equation for
C and hence check your answers to 3.1c.

3.2 Let k be a finite field with d > 1 elements.

(a) Show that every line in A2(k) has an equation of one of the forms x = u, for
u ∈ k, or y = mx+ v, for some m, v ∈ k.

(b) Use 3.2a to show that there are d2 + d distinct lines in A2(k) and that each of
these lines has exactly d points.

AJD September 22, 2003
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3.3 Let k be a field with at least 2 elements.

(a) Show that if (α, β) and (γ, δ) are distinct points of A2(k) then there is exactly
one line l containing these two points. Find the equation and parametric form
of this line.

(b) Show that there is a point of A2(k) which does not lie on the line with equation
ax+ by + c = 0.

(c) Given any line l in A2(k) and a point p not on l show that there is a unique
line through p parallel to l. Find the equation and parametric form of this line.
(Two lines are parallel if their intersection is empty).

(d) Show that in A2(k) any two lines are either parallel, intersect in exactly one
point or are the same.

3.4 Suppose that ax + by + c = 0 and a′x + b′y + c′ = 0 are both equations of the same
line. Show that (a : b : c) = (a′ : b′ : c′). [Hint: compare parametric forms.]

3.5 Find the points of intersection, and corresponding intersection numbers, of the curves
Cf and lines li below in A2(C).

(a) f = y2 − x3 − x2,
(i) l1: x− y = 0; (ii) l2: x+ y = 0; (iii) l3: y = 0; (iv) l4: x = 0.

(b) f = y2 − x3,
(i) l1: x = 0; (ii) l2: y = 0; (iii) l3: y = mx, 0 < m; (iv) l4: y = mx, 0 > m.

(c) f = y2 − x4 + x2,
(i) l1: y = mx, m ∈ k; (ii) l2: x = 0.

(d) f = x6 − x2y3 − y5,
(i) l1: x = 0; (ii) l2: y = 0; (iii) l3: y = x.

3.6 Use maple to plot each of the curves of question 3.5 in A2(R). For each part plot
the given lines on the same drawing as the curve and label the lines appropriately.
(Choose m = ±1 as appropriate.) A curve with equation of the form y2 − φ(x) = 0,
where φ is a polynomial of one variable, may be plotted by drawing both y =

√

φ(x)

and y = −
√

φ(x). For example the following maple command was used to plot the
curve of Figure 2.2 in the Notes.

plot([sqrt(x*(x^2-1)),-sqrt(x*(x^2-1))],x=-2..2);

4 Multiplicities

4.1 Find the multiplicity of each singular point of the curves

(a) x− y3 + xy2 = 0 ;

(b) (x+ y + 1)3 − 27xy = 0 ;
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(c) x2y2 + 36x+ 24y + 108 = 0 .

(d) Find parametric forms for the tangents at each singular point.

4.2 Show that the quartic

α(x2 − 1)2 − 3x(x+ 1)y2 + 2xy3 = 0

has 2 singularities when α 6= −1/8, 0 and 3 singularities when α = −1/8. In each
case find the singularities.

4.3 Show that the curve with equation x3 + px2 − y2 + q = 0 has a singular point if and
only if q = 0 or 4p3 + 27q = 0 .

4.4 Find the multiplicity and parametric forms for the tangents at each singularity of
the curves

(a) x3 + 2y2 + xy + y4 = 0 ;

(b) (x+ 1)2(x2 + 2x+ 2) + y2 + 3y + 2 + xy + x = 0 .

4.5 For which values of c does

x3 + y3 + 1 + c(x+ y + 1)3 = 0

have at least one singular point? In each case find the singular points, their multi-
plicities and parametric forms for their tangents.

4.6 C = {f(x, y) = 0} is an irreducible curve.

(a) If f has degree two prove that C is non-singular. [Hint:If P is a singular point
of C consider a line through P and some other point of C. Then look in the
notes for a result giving the number of points of intersection of C with a line.]

(b) If f has degree three prove that C has at most one singularity.

(c) If f has degree four prove that C cannot have three collinear double points.

4.7 Decide whether the curve

x4 + y4 + x2y2 + x+ y2 = 0

is non-singular or not.

4.8 Let C be a curve in A2(k) of degree d with polynomial f .

(a) Use Corollary 4.7 to show that a point (x0, y0) of C has multiplicity at most d.

(b) Use Lemma 4.8 to show that if k = C and the multiplicity of (x0, y0) is equal to
d then C is a union of lines through (x0, y0).
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4.9 For each of the following curves find multiplicity and all tangents at (0, 0). (Use
Corollary 4.21.)

(a) y2 − x2 + x4.

(b) xy(x2 − y2)− (x2 + y2) = 0.

(c) (x4 + y4)2 − x2y2 = 0.

(d) (x4 + y4 − x2 − y2)2 − 9x2y2 = 0.

4.10 Let Cf be a curve of degree d and let (x0, y0) be a point of Cf . Define a polynomial
g by

g(x, y) = f(x+ x0, y + y0).

(a) Show that g has degree d and that (0, 0) is a point of Cg.

(b) Show that
fxiyj(u+ x0, v + x0) = gxiyj(u, v),

for all (u, v) ∈ A2(k).

(c) Show that (x0, y0) is a point of Cf of multiplicity r if and only if (0, 0) is is a
point of Cg of multiplicity r.

(d) Show that (x0, y0) is a point of Cf of multiplicity r if and only if the lowest
degree terms of g are of degree r.

4.11 Find the multiplicity of the given points of the following curves. (Use the previous
question.)

(a) (1, 2) on the curve

x2y2 − 4x2y + x2 − 2xy2 + 9xy − 4x+ y2 − 5y + 3 = 0;

(b) (3, 0) on the curve

yx4−12yx3 +54x2y−108xy+81y−5x3 +45x2−135x+135+2xy2−6y2 +y4 = 0.

5 Projective space and Projective curves

5.1 Let (a, b, c) be a non–zero vector in k3. Define a map θ : k3 −→ k by θ(x, y, z) =
ax+ by + cz.

(a) Show that θ is a linear transformation from the vector space k3 to the vector
space k.

(b) Write down the formula relating the dimensions of the domain, image and kernel
of a linear transformation of vector spaces. Use this to show that dimk(ker(θ)) =
2.
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(c) Show that the projective line l with equation ax + by + xz = 0 is the set of
points

{(u : v : w) ∈ P2(k) : (u, v, w) ∈ ker(θ)}.

(d) Given a 2–dimensional vector subspace of V of k3 show that there is a unique
projective line l such that (a : b : c) ∈ l if and only if (a, b, c) ∈ V .

(e) Conclude from the above that there is a one to one correspondence between
projective lines and 2–dimensional subspaces of k3.

(f) Use the previous part of the question to show that two distinct points of P2(k)
lie on a unique projective line.

5.2 (a) Find the equation and parametric form of the lines through

i. (1 : 1 : 2) and (3 : 2 : 1);

ii. (1 : 7 : −1) and (3 : −1 : 5).

(b) Dehomogenize the equations found in the previous part of the question (with
respect to z = 1) to find equations of corresponding affine lines.

(c) Find the cartesian coordinates of the points of the affine plane corresponding to
the homogeneous coordinates of the 4 points of part 5.2a. Check that the affine
lines you found in the previous part of the question pass through these affine
points.

5.3 Find the intersection l1 ∩ l2 of each of the following pairs of lines in P2 = P2(C).

(a) l1 = {(x : y : z) ∈ P2|x = 0}, l2 = {(x : y : z) ∈ P2|z = 0},
(b) l1 = {(x : y : z) ∈ P2|x+ y + z = 0}, l2 = {(x : y : z) ∈ P2|x+ y + 3z = 0},
(c) l1 = {(x : y : z) ∈ P2|6x+ 4y + 2z = 0}, l2 = {(x : y : z) ∈ P2|3x+ 2y + z = 0}.
(d) l1 = {(x : y : z) ∈ P2|x+ 7y − z = 0}, l2 = {(x : y : z) ∈ P2|3x− y + 5z = 0}.

If you find that l1 ∩ l2 has more than one point explain why.

5.4 (a) Let l1 and l2 be distinct projective lines with equations ax + by + cz = 0 and
ux+vy+wz = 0, respectively. Show that l1 and l2 intersect at (α : β : γ) where

α =

∣

∣

∣

∣

b c
v w

∣

∣

∣

∣

, β = −
∣

∣

∣

∣

a c
u w

∣

∣

∣

∣

and γ =

∣

∣

∣

∣

a b
u v

∣

∣

∣

∣

.

Verify this formula for each of part of Question 5.3

(b) If V and W are subspaces of a vector space U then we define V +W = {av+bw :
a, b ∈ k,v ∈ V,w ∈W}. The following formula then follows for the dimensions
of V +W and V ∩W :

dimk(V +W ) = dimk(V ) + dimk(W )− dimk(V ∩W ).
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(See notes for MAS261.) Show that if V and W are distinct 2–dimensional
subspaces of k3 then dimk(V ∩W ) = 1. Use this to show that distinct lines l1
and l2 in P2(k) intersect in exactly one point.

5.5 Find the homogenization of each of the following polynomials. In each case find
the points of intersection of the corresponding projective curve and the line z = 0.
Use maple to plot each of the real affine curves using the given parametrisation.
(More than one plot may be needed for a particular curve, in order to avoid points
where the denominator of the parametrisation vanishes.) Print out the plots and the
commands used to generate them and describe briefly how the drawings relate to the
intersections with z = 0 that you found.

(a) x4 + y4 − x2y (setting y = tx gives a parametrisation

x =
t

1 + t4
, y =

t2

1 + t4
,

for this curve).

(b) x4 − y4 − x2y (setting y = tx gives a parametrisation

x =
t

1− t4
, y =

t2

1− t4
,

for this curve).

(c) x3 + y3 + x2 − 2y2 (setting y = tx gives a parametrisation

x =
2t2 − 1

1 + t3
, y =

t(2t2 − 1)

1 + t3
,

for this curve).

(d) x4 + y4 + x3 + y3 (setting y = tx gives a parametrisation

x =
−(1 + t3)

1 + t4
, y =

−t(1 + t3)

1 + t4
,

for this curve).

5.6 Prove that a finite union of projective curves is a projective curve.

5.7 (a) Given a linear transformation θ : k3 −→ k3 show that there is a well–defined map
φ : P2(k) −→ P2(k) given by φ(a : b : c) = (u : v : w), where (u, v, w) = θ(a, b, c).
(You have to show that if (a : b : c) = (a′ : b′ : c′) then φ(a : b : c) = φ(a′ :
b′ : c′).) Show further that if θ is invertible then so is φ. A map such as φ,
which is induced by an invertible linear transformation, is called a projective
transformation.
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(b) Given that we have fixed a basis of k3, an invertible linear transformation of k3

to k3 corresponds to an invertible 3× 3 matrix with entries in k. Let A = (aij)
be a matrix corresponding to the invertible linear transformation θ: that is

Ax = θ(x),

where elements of k3 are written in column form and we use the canonical
basis e1, e2, e3 of k3, (ei has 1 in the ith position and 0’s elsewhere). Let
A−1 = (bij) and let F be a homogeneous polynomial of degree d > 0. Show that
the polynomial G given by

G(x, y, z) = F (b11x+ b12y + b13z, b21x+ b22y + b23z, b31x+ b32y + b33z)

is homogeneous of degree d (in particular show that G is non–zero.)

(c) Let φ be a projective transformation and let C be a projective curve of degree
d. Show that φ(C) is a projective curve of degree d. Show further that C is
irreducible if and only if φ(C) is irreducible. The curves C and D are said to
be projectively equivalent if there is a projective transformation φ such that
φ(C) = D.

5.8 Classification of Real Projective Conics: in this question real projective conics
are classified, up to projective equivalence. A matrix (aij) is symmetric if aij = aji,
whenever i 6= j. A matrix N is orthogonal if NTN = I. We shall say that
a projective transformation is orthogonal if the linear transformation to which it
corresponds is given by an orthogonal matrix (with respect to the canonical basis).
Recall, from second year Linear Algebra, that if A is a symmetric matrix, with real
entries, then there exists an orthogonal matrix N such that N−1AN = D, where D
is a diagonal matrix (D = (dij) with dij = 0 whenever i 6= j).

A curve of degree 2 is called a conic. Let C be a projective conic in P2(R). Then C
has equation

ax2 + by2 + cz2 + dxy + exz + fyz = 0, (5.1)

where a, b, c, d, e and f are real constants and not all zero.

(a) Show that there exists a symmetric matrix A such that equation (5.1) can be
written as

(x, y, z)A





x
y
z



 = 0.

(b) Deduce from 5.8a and the fact recalled from Linear Algebra above, that there
exists an orthogonal projective transformation φ, such that the equation of φ(C)
is

αx2 + βy2 + γz2 = 0, (5.2)

with α, β, γ ∈ R and (α, β, γ) 6= (0, 0, 0).
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(c) Using 5.8b (and a further projective transformation if necessary) show that the
conic C with equation (5.2) is one of the following:

i. a circle (that is, has equation x2 + y2 − z2 = 0);

ii. the empty set;

iii. a pair of distinct lines;

iv. a single point;

v. a single line (repeated).

(d) Which of the above correspond to the affine ellipse, parabola and hyperbola.

(e) How many complex projective conics do you think there are?

5.9 Find the multiplicity of each singular point of the following curves. (Use your answers
to Question 4.1, noting that in this exercise you found all the required singularities
except for those that may occur on the line z = 0.)

(a) xz2 − y3 + xy2 = 0 ;

(b) (x+ y + z)3 − 27xyz = 0 ;

(c) x2y2 + 36xz3 + 24yz3 + 108z4 = 0 .

(d) Find equations for all the tangents to these projective curves at all their points
of intersection with the line z = 0. Hence find equations for all asymptotes to
the the complex affine curves of Question 4.1.

5.10 Find the condition on k for the cubic

x3 + y3 + z3 = kxyz

to be non-singular.

5.11 Find equations for all the tangents to the curves below at points where they meet
the line z = 0 (see Question 5.5). Hence find all asymptotes to the affine curves of
the first 3 parts of Question 5.5.

Plot each curve and its real asymptotes on the same drawing, using maple (reuse
the plots from Question 5.5 if you have them). Use “thickness=5” for the curves
and “thickness=3” for the asymptotes (or some similar ratio). Note that a line with
parametric form (3s+ 2, 5s− 4) can be plotted using

>plot([3*s+2,5*s+2,s=-10..10],x=-5..5,y=-5..5,axes=none,thickness=3);

for example. To display more than one plot at a time do something like the following

>l1:=plot([3*s+2,5*s+2,s=-10..10],x=-5..5,y=-5..5,axes=none,thickness=3):

>l2:=plot([s,-s-1,s=-10..10],x=-5..5,y=-5..5,axes=none,thickness=3):

>C:=implicitplot(x^2+y^2-3,x=-3..3,y=-3..3,numpoints=5000):

>display([l1,l2,C]);
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Describe briefly how the drawings you’ve plotted relate to the asymptotes that you
found.

(a) x4 + y4 − x2yz = 0;

(b) x4 − y4 − x2yz = 0 ;

(c) x3 + y3 + x2z − 2y2z = 0.

5.12 Let C be an irreducible projective curve of degree 4 in P2(C) and let p be a triple
point of C. Show that p is the only singular point of C and that every line through
p meets C in exactly one further point.

5.13 Suppose that F (x, y, z) is a homogeneous polynomial with dehomgenisation f .

(a) Prove that if all partial derivatives of F order r vanish at (α, β, γ), then so do
its partial derivatives of order less than r.

(b) Prove that all partial dervivatives of f of order less than or equal to r vanish
at (α, β) if and only if all partial derivatives of F of order equal to r vanish at
(α, β, 1).

(c) Complete the proof of Theorem 5.21.

5.14 Show that if p = (u : v : w) is a non–singular point of the projective curve CF then
the tangent to CF at p is the line with equation

xFx(u, v, w) + yFy(u, v, w) + zFx(u, v, w) = 0.

5.15 Use the maple package “algcurves” to find all singularities of the curve with polyno-
mial f = xy(x2 − y2)− (x2 + y2). You need to load the package with the command

>with(algcurves);

The output is described on the help pages. (We have not covered delta invariants, so
ignore them.) Note that maple first homogenises the curve and then attempts to find
all singularities of the projective homogenisation. Find multiplicity and tangents at
each singular point. Find any asymptotes to the curve. Now use the “implicitplot”
command to sketch this curve in A2(R). Set the x and y ranges from −5 to 5 and
“numpoints” = 5000. (Don’t forget to load the plots package and remember that
you can make the output look better by using something like

>setoptions(thickness=5,xtickmarks=3,ytickmarks=3,

axesfont=[TIMES,ROMAN,32],labelfont=[TIMES,ITALIC,32]);

to start with. Plot the curves and asymptotes on one diagram (one diagram for
each curve). Make the curves thicker than the asymptotes using “thickness”. Use
“implicitplot” to plot the curves and “plot” for the asymptotes (see question 5.11).
Print out your maple commands and the plot of the curve and mark any asymptotes
on the printout.
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5.16 Use the maple package “algcurves” to find all singularities of the following curves.
(See the previous question.)

(a) (x4 + y4)2 − x2y2 = 0.

(b) (x4 + y4 − x2 − y2)2 − 9x2y2 = 0.

Now use “implicitplot” to sketch the real affine curves with these equations. Set the
x and y ranges from −3 to 3 and “numpoints” = 5000 for the first curve and 10000
for the second. Implicitplot is not really up to this, as it cannot understand the curve
near the origin. Use the solution to question 4.9 to make a better sketch by hand:
assume that at the origin the curve looks like the union of its tangents at the origin.

6 Bézout’s Theorem

6.1 Pascal’s mystic hexagon: Take 6 points P1, · · · , P6, on a curve C. Let L1, · · · , L6

be the lines L1 = P1P2, L2 = P2P3, · · · , L5 = P5P6 and L6 = P6P1. We call
L1 ∪L2 ∪ · · · ∪L6 a hexagon inscribed in C. The side L1 is said to be opposite L4, L2

opposite L5 and L3 opposite L6. Prove that “The pairs of opposite sides of a hexagon
inscribed in an irreducible projective conic meet in three collinear points” as follows.
Let the conic be C and the inscribed hexagon be L1 ∪ L2 ∪ · · · ∪ L6 as above.

(a) Consider the curves A = L1 ∪ L3 ∪ L5 and B = L2 ∪ L4 ∪ L6. Show that A and
B have degree 3.

(b) Show that A and B meet at the points P1, · · · , P6 and the three points, Q1, Q2

and Q3, of intersection of opposite sides of the hexagon.

(c) Use the result of Question 6.3 to show that Q1, Q2 and Q3 are collinear, as
required.

(d) Draw a sketch to illustrate this theorem in the case where C lies in the real
plane.

6.2 Two pairs of opposite sides of a hexagon inscribed in a circle are parallel. Prove that
the third pair is parallel. [Hint: Pascal’s mystic ...]

6.3 Let k be an algebraically closed field and let C and D be projective curves of degree
n in P2(k) which intersect in exactly n2 points. Assume that precisely mn of these
points lie on an irreducible curve E of degree m, with m < n. Let f , g and h be the
polynomials defining C, D and E respectively.

(a) Let (a : b : c) be a point of E which is not in C ∩ D. Let λ = g(a, b, c) and
µ = −f(a, b, c). Show that the polynomial s = λf + µg has degree n and that
Cs ∩ E contains at least nm + 1 points (where Cs is the curve with equation
s = 0).

(b) Show that E and Cs have a common component. Conclude that E is a compo-
nent of Cs.
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(c) Show that s = ht for some polynomial t of degree at most n−m.

(d) Prove that the n(n −m) points of C ∩D which do not lie on E lie on a curve
of degree at most n−m.

7 Inflexions

7.1 Find the inflexions of the curves with equations

(a) x3 − y2z − 2z3 = 0;

(b) x3 + y3 + xz2 = 0;

(c) zy2 − x3 + 2z3 = 0.

7.2 It can be shown that if Cf is an irreducible curve in P2(k) such that Hf (u : v : w) = 0
at each point (u : v : w) of Cf then Cf must be a line. This fact may be useful in
answering the first half of this question. Let C be a non–singular curve of degree d
in P2(k), where k is algebraically closed.

(a) Show that if d ≥ 2 then C has at most 3d(d− 2) inflexions.

(b) Show that if d ≥ 3 then C has at least on inflexion.

7.3 Show that the complex curve CF , where F = x3 +y3−xy(x+y+z), has one singular
point and 3 inflexions. Show that the 3 inflexions all lie on one line.

7.4 Show that the complex curve CF , where F = z(x2 + y2) − (3y2 − x2), has a unique
singularity at (0 : 0 : 1). Show that the Hessian vanishes if and only if z(x2 + y2) +
3(3y2 − x2) = 0. Deduce that CF has exactly 3 inflexions all of which lie on a line.

7.5 Find all 12 inflexions of the curve with polynomial F = x4 + y4 + z4 in P2(C).

8 Cubics and the group law

8.1 Show that the curve C of question 7.1a is non–singular. Let O be the point (0 : 1 : 0)
of this curve and consider the group law with O as identity. Find the points

(a) (0 :
√

2 : i) + (2 :
√

6 : 1);

(b) (0 :
√

2 : i) + (0 :
√

2 : −i);
(c) inverse of (2 :

√
6 : 1).

8.2 Let C be an irreducible cubic and let O be an inflexion of C. The Group Law is
defined on C, taking O to be the identity element.

(a) Show that if A is a point of C then −A is the third point of intersection of the
line OA with C.
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(b) Show that if A,B,C are points of C then

A+B + C = O

if and only if A,B and C are collinear.

(c) In the terminology of group theory an element A of a group has order n if
nA = 0 and A, 2A, . . . , (n − 1)A are all non–identity elements. Show that if
P 6= O is a point of C then P has order 2 if and only if the tangent to C at P
passes through O. Show that P 6= O is of order 3 if and only if P is an inflexion.

8.3 Let
f = xy(x+ y) + z3

and let C be the complex curve with equation f = 0.

(a) Show that C is non–singular.

(b) Find all points of inflexion of C.
(c) The Group Law is defined on C, taking the identity element O to be the inflexion

(1 : −1 : 0). Let ω = (−1 + i
√
−3)/2, A = (0 : 1 : 0) and B = (ω : 1 : 1). Find

the points A + B, −A, −B, A − B, B − A and −A − B of C and verify that,
together with O, these are precisely the inflexions of C.

8.4 Let
f = x3 + y3 − z3

and let C be the complex curve with equation f = 0.

(a) Show that C is non–singular and find all its points of inflexion.

(b) The Group Law is defined on C, taking the identity element O to be the inflexion
(1 : 0 : 1). Let A = (1 : −1 : 0) and B = (0 : 1 : ω2), where ω = ei2π/3. Find
the points A + B, −A, −B, A − B, B − A and −A − B of C and verify that,
together with O, these are precisely the inflexions of C.
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