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L7 (4.4)–(4.5)
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L9 and presentations (6.2)
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L11 (7.2)
L12 Normal subgroups and (8.1),(8.2)
L13 quotient groups (8.3),(8.4)
L14 Group actions (9.1)–(9.3)
L15 (9.4)–(9.9)
L16 (9.10)–(9.11)
L17 (9.12)–(9.13)
L18 (9.14)–(9.15)
L19 Sylow theorems (10.1)–(10.2)
L20 (10-2)ctd.–(10.3)

This approximate schedule uses 20 of the 22 lectures available; the two
remaining lectures will be used as necessary, to spend additional time
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on some sections, or for review.

In 2012,13 the course meets on Mondays at 1300 in Herschel TR2,
Tuesdays at 1100 in Herschel TR2, Wednesdays at 09.00 in Herschel
TR3. In general the Monday and Tuesday meetings will be lectures,
and the Wednesday meeting will be a problem class in even weeks, and
a drop-in tutorial in odd weeks, but the meeting on Wednesday of week
1 will also be a lecture.

There will be no meeting on Wednesday November 7th, and so the
meeting on November 6th will be used as a problem class rather than
as a lecture.

All meetings in week 12 will be used for revision.
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Homeworks will be set in the Monday lecture of weeks 2,4,6,8,10 and
will be due by the end of Friday 11 days later (weeks 3,5,7,9,11).

In general my office hours will be on Tuesdays 1230-1400 and Thursdays
1130-130. But there will be no office hour on November 1st (and
that week my Tuesday office hour will be extended until 1430). My
office hour on October 24th will run 11-12, and my office hour on
November 29th will start late and so run approx. 12-1 (I have a meeting
before). Students who cannot manage those times may e-mail me for
appointments.
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Homework Sections covered Due date
Homework 1 (1),(2) End of week 3
Homework 2 (3),(4) End of week 5
Homework 3 (5)–(7.1) End of week 7
Homework 4 (7.2)–(9.6) End of week 9
Homework 5 (9.7)–(10.3) End of week 11
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1 Introduction

1.1 What is group theory?

Group theory is a branch of algebra with applications both within math-
ematics and in other sciences. Essentially groups are used as algebraic
descriptions of symmetry.

Many structures can be best understood through space transformations
that leave them unchanged, that is, via their symmetry groups.

Other, less symmetrical structures are easily understand via their fun-
damental groups, which allow them to be found as quotients of
more symmetrical structures.
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1.2 The platonic solids

The 5 platonic solids, tetrahedron, cube, octahedron, dodecahedron,
and icosahedron. are the only convex polyhedra with identical regular
polyhedral faces; see wikipedia for animation. All 5 solids have lots of
rotational and reflective symmetry, so large symmetry groups:

S4, S4 × C2, S4 × C2, A5 × C2, A5 × C2.

Even without understanding the notation we can see that :-
• the groups for the cube and the octahedron match, so do those for
the dodecahedron and the icosahedron,
• the group of the tetrahedron (S4) is related to the group of the cube
and octahedron (S4 × C2).
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1.3 Dualities between solids whose groups match

Take a cube. Put a vertex in the middle of each face, and join two such
vertices if they are in adjacent faces. The resulting 6 vertex polyhedron
is an octahedron. Do the same construction with an octahedron and
you get a cube. The same construction with a dodecahedron gives
an icosahedron, and vice versa. From a tetrahedron you get another
tetrahedron.

There’s a duality between the cube and the octahedron, and between
the dodecahedron and the icosahedron; the tetrahedron is self-dual.

Two polyhedra related by a duality have to have the same symmetry
group.
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1.4 Tetrahedra within cube because groups are related

The 8 vertices of a cube can be coloured black and white alternately, so
that every edge contains a black and a white vertex. The black vertices
can be joined to give one tetrahedron, the white vertices another.

So there are two tetrahedron within a cube. That’s why the group
of the tetrahedron (S4) is a subgroup of the group of the cube
(S4 × C2).

To find two tetrahedra outside an octahedron, colour the 8 faces of the
octahedron alternately black and white. Then extend each face to a
4×bigger triangle, by adding a triangle outside each edge. The 2 sets
of 4 faces form a black and a white tetrahedron.
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1.5 The fundamental group of a torus

We can unwrap a torus (ring doughnut) to get a square. First cut the
torus along a circle to get a tube. Then cut the tube along its length to
get a square. Since 2-D space (R2) can be tiled with unit squares, we
can understand the torus through the set of (translational) symmetries
of R2 of the form (x, y) 7→ (x + i, y + j) (for i, j ∈ Z) that preserve
those tilings. This is the fundamental group of the torus.

We can unwrap a double torus (pretzel) too; we get an octagon. We
can tile the Poincaré disc (hyperbolic plane, H2) with those. So we
can understand the double torus through a group of symmetries of the
hyperbolic plane.
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1.6 Introducing permutation groups

All the groups we have introduced so far are permutation groups, that
is, they are sets of bijections from a set to itself.

The symmetries of the Platonic solids are transformations of 3-D space
(R3) that fix the solids, i.e. they are permutations of the points of R3.

The fundamental group of the torus consists of the permutations of
R2 of the form (x, y) 7→ (x + i, y + j).

The fundamental group of the torus is a set of permutations of the
points of the Poincaré disc.

Actually a famous theorem of Cayley tells us that every group can be
represented as a permutation group; although since any given group
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can be seen in many different ways, we will also see groups in other dis-
guises. Still, in this course, we will meet a lot of permutation groups.
We’ll be particularly interested in the symmetric groups Sn, the al-
ternating groups An and the dihedral groups D2n (symmetry groups
of regular n-gons), which between them provide us with a rich set of
examples. So we’ll start the course by looking at permutations, and
getting to know these particular groups.

7



2 Permutations and permutation groups

2.1 The set of permutations, S(Ω)

Definition 2.1 A permutation of Ω is a bijection from Ω to Ω.

e.g.1: f : Z → Z defined by f (x) = x + 1. But NOT f : N → N,
with the same rule (it’s not onto).

e.g.2: f : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} defined by the rule f (x) =
x + 1 if x = 1, 2, 3 or 4, and f (5) = 1.

In group theory we usually label permutations with Greek letters like
π, ρ, σ, rather than f, g, h. We write ι for the identity permutation.
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We shall be interested not just in single permutations of a set Ω, but
in the set of all permutations of Ω.

Notation 2.2We write S(Ω) to denote the set of all permutations
of a set Ω. Where Ω = {1, 2, . . . , n}, we may also write Sn.
Some authors use the notations Σ(Ω) or Sym(Ω), Σn or Sym(n).

In this section we’ll learn some techniques to work with S(Ω). Usually
Ω will be a finite set and usually Ω = {1, 2, 3, . . . n}, for some positive
integer n. But much of what we say also makes sense for infinite sets.
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2.2 Composing and inverting permutations

Standard results about bijections tell us that, for any set Ω,

• for π, ρ ∈ S(Ω), ρ ◦ π is in S(Ω),
• the identity map ι : Ω → Ω is in S(Ω),
• for π ∈ S(Ω), π is invertible, with inverse π−1 ∈ S(Ω).
So the set S(Ω) of permutations is more than just a set. Composition
and inversion give it extra structure, make it a group.

We shall often abbreviate ρ ◦ π as ρπ. We shall also write πn to mean
the composite of n copies of π, π ◦ · · · ◦ π.
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2.3 Two-line matrix notation for permutations

In the two-line matrix notation for a permutation of a finite set Ω, the
top row contains the elements of Ω in some order, and the entry in the
second row below the element x of Ω is its image π(x).

It doesn’t matter what order the elements of the top row are given
in. So the matrices below both represent the same permutation of
{1, 2, 3, 4, 5}:

(

1 2 3 4 5
2 3 4 5 1

)

,

(

5 4 3 2 1
1 5 4 3 2

)

But it’s usual for a permutation of Ω = {1, 2, 3, 4, . . . n} to write the
elements of Ω in the top row in the natural order.
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Computing composites and inverses

Using two-line notation it is quite easy to compute composites and
inverses.

To compute the composite ρ◦π we reorder the columns of ρ so that the
top row of ρ matches the bottom row of π. Then the matrix whose top
row matches the top row of π and whose bottom row is the reordered
bottom row of ρ represents ρ ◦ π.
A matrix for π−1 is found by turning the matrix for π upside down
(and then we probably need to reorder the columns).
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Example 2.3

Suppose that π =

(

1 2 3 4 5
2 3 4 5 1

)

, ρ =

(

1 2 3 4 5
2 1 4 3 5

)

.

Then ρ =

(

2 3 4 5 1
)

, and so ρπ =

( )

,

and π =

(

2 1 4 3 5
)

, and so πρ =

( )

,

π−1 =

( )

=

( )

,

ρ−1 =

( )

=

( )

.
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2.4 Counting permutations

Using matrix notation it is very easy to count the elements of Sn.
Proposition 2.4 |Sn| = n!

Proof: |Sn| is the number of matrices with top row 1 2 . . . n and with
the numbers 1, 2, . . . , n in some order in the bottom row. So it’s the
number of ways of putting the numbers 1, 2, . . . , n into order, that is,
it’s n!. �
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2.5 Order of a permutation

Definition 2.5 The order of a permutation π ∈ Sn, written |π|, is
defined to be the smallest integer N for which πN = ι

Notice that

• if πm = ι then m is a multiple of |π|;
• |π| divides n! (this follows from Lagrange’s theorem, which we’ll
meet later in the course).

A permutation of an infinite set could have infinite order, i.e there need
not exist an integer N 6= 0 with πN = ι. The permutation of Z which
maps each x to x + 1 has infinite order.
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For a permutation described by matrix notation, we can find its or-
der by repeatedly computing powers of it until we reach the identity
permutation.

e.g.

π =

(

1 2 3 4 5
2 3 4 5 1

)

, ρ =

(

1 2 3 4 5
2 1 4 3 5

)

ρ2 =

(

1 2 3 4 5
2 1 4 3 5

)(

1 2 3 4 5
2 1 4 3 5

)

=

( )

16



π2 =

(

1 2 3 4 5
2 3 4 5 1

)(

1 2 3 4 5
2 3 4 5 1

)

=

( )

π3 =

( )(

1 2 3 4 5
2 3 4 5 1

)

=

( )

π4 =

( )( )

=

( )

π5 =

( )( )

=

( )

We’ll see soon that it’s much easier to find the order of a permutation
which is described using cycle notation.
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2.6 Cycle notation for permutations

Definition 2.6 (cycle) A permutation π of a set Ω is called a cycle
of length r (or r-cycle) if there are elements x1, . . . xr of Ω such that
π(x1) = x2, π(x2) = x3, . . ., π(xr) = x1, and for all other x ∈ Ω,
π(x) = x. We write π = (x1, x2, . . . xr).
A cycle of length 2 is called a transposition.

E.g. If π =

(

1 2 3 4 5
2 3 4 5 1

)

, ρ =

(

1 2 3 4 5
2 1 4 3 5

)

, σ =

(

1 2 3 4 5
1 3 5 4 2

)

,

then π is a 5-cycle on {1, 2, 3, 4, 5}, σ is a 3-cycle on {2, 3, 5}, ρ is
not a cycle. We write () or (1) or (2) etc. to represent ι.
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Definition 2.7 (disjoint cycles) Two cycles π = (a1, . . . ar) and
σ = (b1, . . . , bs) are said to be disjoint if no ai is equal to any bj.

e.g. (1, 2, 3) and (4, 5, 6, 7).

Proposition 2.8 If π and σ are disjoint cycles then πσ = σπ.

Proof: Where π = (a1, . . . , ar) and σ = (b1, . . . , bs),
we can check that πσ(ai) = σπ(ai) = ai+1 (subscripts taken mod r),
that πσ(bj) = σπ(bj) = bj+1 (subscripts taken mod s),
and that for all other x, πσ(x) = σπ(x) = x.

Hence πσ = σπ. �
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Proposition 2.9 (i) The cycle σ = (a1, . . . , ar) has order r.

(ii) A product π = π1 · · · πk of disjoint cycles, of lengths r1, . . . rk,
has order N = lcm(r1, . . . , rk).

(iii) The inverse of the cycle σ = (a1, . . . , ar) is the cycle σ−1 =
(ar, . . . , a1)

(iv) The inverse π−1 of a product π = π1 · · · πk of disjoint cycles, can
be written as the product of disjoint cycles π−1

1 · · · π−1
k of disjoint

cycles.
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Proof: Part (i) is immediate once we realise that for any m, σm maps
a1 to am+1 (taking subscripts mod r).

To see part (ii), we see that since the πis are disjoint, they commute,
and so for any integer m, πm = πm1 πm2 . . . πmk . Since the powers of
the πi’s move disjoint sets of elements of Ω, πm = ι iff πmi = ι for
each i, iff ri divides m for each i (using (i)).

To see part (iii) we calculate the compositions (a1, . . . , ak)(ak, . . . , a1)
and (ak, . . . , a1)(a1, . . . , ak).

Then part (iv) follows immediately from part (iii) together with the
fact that the disjoint cycles π1, . . . , πk commute. �
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2.7 Products of disjoint cycles

The above results suggest that it is easy to work with permutations
that can be written as products of disjoint cycles. And luckily we have
the following result.

Proposition 2.10 Every permutation π of a finite set Ω can be writ-
ten as a product of finitely many disjoint cycles. The decomposition is
unique, apart from the order of the cycles in the product.

Proof: If π is the identity then it is a product of zero cycles.

Otherwise we choose x1 ∈ Ω with π(x1) 6= x1, and define our first cycle
π1 to be (x1, π(x1), π

2(x1), . . . , π
k1−1(x1)), where π

k1(x1) = x1.
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Assuming we can find x2 outside the cycle π1 with π(x2) 6= x2, we
then define a second cycle π2 to be (x2, π(x2), π

2(x2), . . . , π
k2−1(x2)),

where πk2(x2) = x2, and so on, always choosing xr+1 outside the
cycles π1, . . . , πr, with π(xr+1) 6= xr+1 until no such xr+1 exists.

At that stage we have disjoint cycles π1, . . . , πr, and for each x ∈ Ω
either π(x) = x or π(x) = πi(x) for some i. So π = π1 · · · πr.
Now given π as a product of disjoint cycles, any element x can be in
at most one cycle. And if x is in the cycle πi, then that cycle must
have the form (x, π(x), π2(x), . . . , πk−1(x)) for some k. So it must
be exactly as described above. Hence the decomposition is unique. �
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Example 2.11Write π and ρ (defined below) as products of disjoint
cycles.

π =

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 3 5 7 9 11 13 2 4 6 8 10 12 14

)

,

ρ =

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14
4 3 6 9 10 8 2 7 1 12 5 11 14 13

)

In both examples we compute the first cycle by computing the succes-
sive images of 1, the image of 1, the image of the image of 1, etc.
until we get back to 1. Then we compute the second cycle by doing
the same starting with the smallest number we have not yet seen, etc.,
etc.
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First we compute the cycles of π.

1 7→
2 7→ 7→ 7→ 7→

14 7→
So π =

25



Now we compute the cycles of ρ.

1 7→
2 7→
5 7→
13 7→

So ρ =
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2.8 Multiplying permutations given in cycle notation

To represent the product of two permutations given in cycle notation as
a single product of disjoint cycles, we first concatenate the two products
of cycles to get a single composite of cycles, then use the method above
to write that composite function as a product of disjoint cycles.

Example 2.12

Let π = (1, 2, 4, 5), σ = (2, 4)(6, 7). Then σπ = (2, 4)(6, 7)(1, 2, 4, 5),
a product of cycles that are not yet disjoint. Now under σπ, 1 7→ 4 7→
5 7→ 1, and 6 7→ 7 7→ 6. So σπ = (1, 4, 5)(6, 7).
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And πσ =

28



2.9 Listing the elements of Sn
We can write down the sets of n! elements of the first few groups Sn,
using disjoint cycle notation.

S1 = {()}
S2 = {(), (1, 2)}
S3 = {(), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}
S4 = {(), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)

(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2, 3), (1, 3, 2),

(1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3),

(1, 2, 3, 4), (1, 4, 3, 2), (1, 2, 4, 3), (1, 3, 4, 2), (1, 3, 2, 4), (1, 4, 2, 3), }
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2.10 Products of transpositions; odd and even

It’s usually convenient to write a permutation as a product of disjoint
cycles, but there are also other meaningful ways to decompose a per-
mutation.

Theorem 2.13 Every permutation π of a finite set Ω can be written
as a product of transpositions.

Proof: Write π as a product π1, . . . πk of disjoint cycles. We prove
the theorem by showing that each one of those cycles can be written
as a product of transpositions. Then π is equal to the product of those
products.
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To see that any cycle can be written as a product of transpositions,
note that

(a1, ak)(a1, ak−1)(a1, ak−2) . . . (a1, a3)(a1, a2) = (a1, . . . ak)

�

In particular, notice that

(1, n)(1, n− 1) . . . (1, 2) = (1, 2, 3, 4, . . . n)

Notice that if π = π1 · · · πk is written as a product of cycles that are
not disjoint then the inverse of π must be computed as π−1

k · · · π−1
1 .

That product is only equal to π−1
1 · · · π−1

k when the cycles are disjoint.
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A given permutation can be written as a product of transpositions in
many different ways, and different products may well involve different
numbers of transpositions. For instance, notice that

(1, 2, 3) = (1, 3)(1, 2) = (1, 2)(2, 3) = (1, 2)(2, 4)(3, 4)(2, 4)

What is remarkable is the following:-

Theorem 2.14 For any given permutation π, the number of trans-
positions in any product of transpositions representing π has the same
value modulo 2.

This is non-trivial to prove, and we shall not prove it in this course.
But the result allows us to divide permutations into two types, odd and
even.
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Definition 2.15We define a permutation to be even if it can be
written as a product of an even number of transpositions, and odd if
it can be written as a product of an odd number of transpositions. We
call the value ‘even’ or ‘odd’ the parity of the permutation.

Since an r-cycle can be written as a product of r − 1 transpositions,
we see that cycles of odd length represent even permutations, while
cycles of even length represent odd permutations.

It follows from theorem 2.14 that the product of two odd permutations
or of two even permutations is always even, and that the product of an
odd and an even permutation is always odd.
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Where π = π1 · · · πk is written as a product of cycles (disjoint or
otherwise), π represents an even permutation if an even number of the
cycles have even length, and an odd permutation if an odd number of
the cycles have even length.
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2.11 The alternating groups

We already defined the alternating group An to be the group of all
even permutations of {1, 2, . . . , n}. Note that we haven’t actually
defined a group yet, but in essence the group is the set of even per-
mutations, together with the extra structure on that set provided by
function composition. Then

A1 = {()}
A2 = {()}
A3 = {(), (1, 2, 3), (1, 3, 2)}
A4 = {(), (1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3),

(2, 3, 4), (2, 4, 3), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
35



2.12 A useful card trick

The first player deals out 4 playing cards onto a table, left to right.
✓

✒

✏

✑

✓

✒

✏

✑

✓

✒

✏

✑

✓

✒

✏

✑

The second player is allowed to swap cards in pairs, for as long as he
likes, except that in each move he must always perform two swaps.

The second player wins if he can put the cards into the ascending order
defined by A < 2 < 3 · · · < J < Q < K within each suit, with all ♥s
preceding all ♠s, then all ♦s, then all ♣s. Otherwise he loses.

How must the first player deal to ensure that he always wins?
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2.13 The dihedral groups

t1 t2

t3

t
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✔
✔
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✔
✔
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❚
❚

❚
❚

❚
❚❚

✏
✏

✏
✏

✏
✏

P
P

P
P

P
P ✛✘

❄

t1 t2

t3t4

t

�

�

�

�
❅

❅

❅

❅

✛✘
❄

t1 t2

t3

t4

t5
t

❆
❆

❆
❆

❆
❆

❆

✁
✁
✁
✁
✁
✁
✁

✚
✚
✚
✚

✚
✚
✚✚

❩
❩

❩
❩

❩
❩

❩❩

✜✜

✜✜

✜✜

✜✜

✜✜

❭❭

❭❭

❭❭

❭❭

❭❭

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳

✛✘
❄

We can describe the symmetries of a regular n-gon in terms of their
effects on the n-vertices of the polygon, that is as permutations of
n-points, and so as elements of Sn. In fact the set of symmetries of
a regular n-gon forms a group, called the dihedral group D2n; it
contains 2n elements.
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D6 = {(), (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3)} is the group of sym-
metries of the equilateral triangle with vertices 1, 2, 3. It contains two
non-trivial rotations, and three reflections. In fact it’s the whole of S3.

D8 = {(), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2),
(1, 3), (1, 2)(3, 4), (2, 4), (1, 4)(2, 3)}

is the group of symmetries of the square with vertices 1, 2, 3, 4. It
contains three non-trivial rotations, and four reflections.

In general, D2n contains n− 1 non-trivial rotations and n reflections.
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2.14 Platonic solids

We can describe the symmetry groups of the 5 platonic solids as groups
of permutations of their vertices (or alternatively of their edges, or
faces). So we can find the symmetry group of the tetrahedron within
S4, the groups of the cube, octahedron, dodecahedron, icosahedron
within S8, S6, S20, S12. We’ll find other, more compact descriptions
of these groups later in the course.
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2.15 Symmetries of the tetrahedron

t1 t2

t3

t4

✔
✔
✔
✔
✔
✔
✔
✔✔

❚
❚

❚
❚

❚
❚

❚
❚❚

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

�
�
��

❜
❜
❜
❜
❜
❜
❜
❜❜

We can write down the permutations in S4 that
represent the symmetries of the tetrahedron as follows.

The tetrahedron is fixed by the identity permutation ().

There are 8 rotations through ±2π/3 about axes that join a vertex to
the centre of the triangular face opposite it:
(2, 3, 4) and (2, 4, 3) about the axis joining 1 to the centre of 234,
(1, 3, 4) and (1, 4, 3) about the axis joining 2 to the centre of 134,
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(1, 2, 4) and (1, 4, 2) about the axis joining 3 to the centre of 124,
(1, 2, 3) and (1, 3, 2) about the axis joining 4 to the centre of 123.

There are three rotations through π about axes that join the midpoints
of two edges:
(1, 2)(3, 4) about the axis joining the midpoints of 12 and 34,
(1, 3)(2, 4) about the axis joining the midpoints of 13 and 24,
(1, 4)(2, 3) about the axis joining the midpoints of 14 and 23.

We can see that these are the elements of A4.
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The 12 remaining elements are found as reflections and products of 3
reflections (the product of any two reflections is a rotation).

There are 6 reflections through planes each of which are passes through
one edge and bisects two faces:
(1, 2), which reflects in a plane through the edge 34,
and then similarly (1, 3), (1, 4), (2, 3), (2, 4) and (3, 4).

The 6 other elements, each a product of 3 reflections, each permute
the 4 elements in a 4-cycle. They are

(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2)
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2.16 Symmetries of the cube

t2 t3

t1 t4

t
6

t
7

t5 t8

✟✟✟✟✟✟

✟✟✟✟✟✟

✟✟✟✟✟✟

✟✟✟✟✟✟

Similarly we can write down the permuta-
tions of {1, 2, . . . , 8} that represent the symmetries of the cube,
e.g. the reflection in the vertical plan containing the vertices 1,8,7,2 is
represented by the permutation π1 = (3, 6)(4, 5),
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and the reflection in the horizontal plane that bisects each of the lines
12, 34, 56, 78 is represented by the permutation

π2 = (1, 2)(3, 4)(5, 6)(7, 8).

The product

π2π1 = (1, 2)(3, 4)(5, 6)(7, 8)(3, 6)(4, 5) = (1, 2)(3, 5)(4, 6)(7, 8)

represents a rotation through π about an axis that joins the midpoints
of 12 and 78.
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3 Group axioms and examples

3.1 The axioms

We’ve met some examples of groups; it’s time for a proper definition.

Basically a group is a set G with additional structure. A rule known as
a ‘binary operation’ allows pairs of elements to be multiplied together.
3 group axioms govern the behaviour of this multiplication rule.

By definition, a binary operation ◦ on G is a rule that defines a unique
element x ◦ y of G, given any ordered pair of elements x, y ∈ G, x ◦ y
needs to be unambiguously defined, and to be an element of G (neither
of this properties is necessarily obvious).
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Definition 3.1 A set G, equipped with a binary operation ◦, is a
group, provided that is satisfies the following three basic axioms.

associativity For all elements x, y, z of G,

(x ◦ y) ◦ z = x ◦ (y ◦ z).
∃ identity G contains an element e, the identity element, s.t.

for all x ∈ G,
x ◦ e = e ◦ x = x.

∃ inverses For each element x of G, there is an element x′, the
inverse of x, s.t.

x ◦ x′ = x′ ◦ x = e.
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To verify that a pair (G, ◦) forms a group we simply need to verify

• that ◦ is a binary operation,

• that the three axioms hold.
It is in fact a consequence of the axioms that a group can contain only
one identity element, and that each element has just one inverse.

Very often we write just xy rather than x ◦ y, that is, no symbol is
used for the binary operation, just juxtaposition. And we write xn for
x ◦ x · · · ◦ x (a product of n copies of x).
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3.2 Groups of permutations

So far we have met 3 families of permutation groups as examples:
the symmetric groups Sn, the alternating groups An and the dihedral
groups D2n.

That these are groups under the operation of function composition
(well known to be associative) is clear from the fact that each contains
the identity permutation, the inverse of any one of its elements, and
the product of any two of them.

It is easy to find other examples of permutation groups.

And it turns out that we can find group structures also on many other
sets, e.g. of matrices, of numbers, and of strings.
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3.3 Groups of matrices

We can find many examples of groups of square matrices. For any n, a
set of n× n matrices forms a group under matrix multiplication (well
known to be associative) provided that it contains the identity matrix
In, the inverse of any one of its elements, and the product of any two
of them.

Examples 3.2

E.g.1 the group of all invertible n × n matrices over R, called the
general linear group GLn(R). Similarly we define GLn(C) over C.
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E.g.2 The symmetry group D8 of the square can be described as the
group of 8 matrices:

{(

1 0
0 1

)

,

(

0 −1
1 0

)

,

(

−1 0
0 −1

)

,

(

0 1
−1 0

)

,
(

−1 0
0 1

)

,

(

1 0
0 −1

)

,

(

0 1
1 0

)

,

(

0 −1
−1 0

)}

E.g.3 The quaternion group Q8 consists of the 8 matrices:
{(

1 0
0 1

)

,

(

−1 0
0 −1

)

,

(

0 i
i 0

)

,

(

0 −i
−i 0

)

,
(

i 0
0 −i

)

,

(

−i 0
0 i

)

,

(

0 1
−1 0

)

,

(

0 −1
1 0

)}
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3.4 Groups of numbers

We can make plenty of examples of groups using standard addition and
multiplication of numbers in familiar sets.

E.g.1 Any one of the sets Z,Q,R,C (and indeed many other sets of
numbers) forms a group under addition.

For it is clear that for each of those sets the sum of any two elements
is an element of the set, and addition is associative.

In each group,0 is the identity element, and a has inverse −a.

We can write (Z,+) rather than Z, etc. if we need to distinguish
between the groups and the underlying sets.
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E.g.2 Each of the sets Q \ {0}, R \ {0} and C \ {0} forms a group
under multiplication. We call the groups (Q \ {0},×), (R \ {0},×),
(C \ {0},×).

Again it is clear that for each of those sets the product of any two
elements is an element of the set, and multiplication on each of those
sets is associative.

In each group, 1 is the identity element, and a has inverse 1/a.

The multiplicative groups have to exclude 0, since 1/0 is not defined,
and we can’t make a multiplicative group out of Z, since in general
1/a is not an integer, for a ∈ Z.
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E.g.3 The integers in the set Zm = {0, 1, · · · ,m − 1} form a group
under addition mod m, in which 0 is the identity and the inverse of
a is m − a. We call this the additive group of the integers mod m,
(Zm,+m) (or Cm, as will be explained later).

For a prime p, the integers in the set {1, 2, 3, · · · , p− 1} form a group
under multiplication mod p, in which 1 is the identity and the inverse
of a is the unique integer b that satisfies ab = 1 mod p.

For a non-prime m, the equation ab = 1 mod m does not have a
solution b if a divides m. But in that case, the set of integers a with
1 ≤ a ≤ m− 1, and a coprime to m forms a group in the same way.
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3.5 Groups of strings

Given any set of symbols X = {a, b, c, · · ·}, we can define groups of
strings over X .

E.g.1 The simplest example of these groups are the free groups.

The elements of the free group F2 on {a, b} are all the strings involving
the symbols a, a−1, b, b−1, in which a and its inverse a−1 are never
adjacent, and nor are b and b−1. We call these freely reduced strings.

The product of two freely reduced strings is formed by concatenating
them, then cancelling any two inverse symbols that become adjacent.

e.g. the product of ababab and b−1ab is ababaab, which we can write
as ababa2b.
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In this group the empty string (written e) is the identity, a−1 is the
inverse of a (and vice versa), b−1 is the inverse of b (and vice versa),
and for any string of symbols x1 · · · xk, the string x−1

k · · · x−1
1 is the

inverse of x1 · · · xk.
We can compute a few products in this group as an exercise:

aba−1 ◦ ab−1aba2 =

ab2a−1ba ◦ a−1b−2ab−1a−1 =

ab2a−1ba ◦ a−1b−1ab−2a−1 =

We can define a free group over any set of symbols.
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We can modify the definition of a free group to get further groups.
Basically we add some rules or equations in the group, that makes
several freely reduced strings represent the same element.

E.g.2 We define the free abelian group Z2 on {a, b} by adding
the rule ab = ba to the definition of the free group. From ab = ba we
can deduce the rules

b−1a = ab−1, ba−1 = a−1b, a−1b−1 = b−1a−1.

since, for example,

ab = ba ⇒ b−1(ab)b−1 = b−1(ba)b−1 ⇒ b−1a = ab−1.

And using these rules we deduce that any string is equal to one of the
form aibj, for integers i, j.
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In this group the product of two strings of the form aibj is formed by
concatenating them and then swapping the order of the terms until the
product string has the form aibj. e.g.

a3b5 ◦ a−2b3 =

As before the empty string e is the identity element. The inverse of
aibj is a−ib−j.

We can define a free abelian group on any set of symbols.
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3.6 Abelian groups

Definition 3.3 A group G with binary operation ◦ is called abelian
if, for all elements x, y of G,

x ◦ y = y ◦ x.
Examples 3.4

E.g.1 All the groups of numbers we have seen are abelian; for addition
and multiplication of numbers is certainly commutative.

E.g.2 The free abelian group over any set is abelian, but the free group
is not.

The groups of permutations and matrices we have met so far are not
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abelian; function composition and matrix multiplication is not in gen-
eral a commutative operation. However there are abelian matrix and
permutation groups; we just haven’t met any so far.

E.g.3 The set of 4 permutations

{(), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
forms an abelian group under function composition.

E.g.4 The set of matrices
{(

1 a
0 1

)

: a ∈ Z

}

forms an abelian group under matrix multiplication.
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4 Basics of group theory

4.1 Order

Definition 4.1We define the order of a group G, usually written
|G|, to be the number of elements in G. If G has infinitely many
elements, we say that G has infinite order.

The order of an element x, usually written |x| or o(x), is the smallest
positive integer n such that xn = e. If there is no such integer, we say
that x has infinite order. An element of order 2 is called an involution

Of course this matches the definition of order we have already given
for permutation groups.
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Proposition 4.2 xk = e ⇐⇒ |x| divides k.

Proof: The proof of ⇐ should be obvious, since if k = qn where
n = |x|, then xk = xqn = (xn)q = eq = e.

To see that ⇒ holds, note that the division algorithm for integers tells
us that k = qn + r for some integers q, r where 0 ≤ r < n. Hence
xk = e ⇒ xqn+r = e ⇒ (xn)qxr = e ⇒ eqxr = e ⇒ xr = e. But
since 0 ≤ r < n and n, as the order of x is the smallest positive power
to which x can be raised to get e, we must have r = 0. So k = qn,
and the result is proved. �
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4.2 Conjugates

Definition 4.3 For x ∈ G, g ∈ G, we write xg to mean gxg−1 of
G and call this the conjugate of x by g, and we write Xg for the
set {xg : x ∈ X}, for any subset X of G.

(warning: some textbooks write xg to mean g−1xg instead)

Proposition 4.4 xg has the same order as x.

Proof: Exercise �
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4.3 Subgroups and normal subgroups

Definition 4.5 A subset H of a group G is called a subgroup of
G if H (under the same binary operation) is also a group, that is, if

• e ∈ H , where e is the identity of G,

• for all x, y ∈ H, xy ∈ H

• for all x ∈ H, x−1 ∈ H

We write H ⊂ G or H ⊆ G (or H < G, H ≤ G). A subgroup H
with H 6= G, is called a proper subgroup; we write H ( G.

A subgroup N of G is called normal if for all g ∈ G, Ng ⊆ N , that
is if ng ∈ N,∀n ∈ N, g ∈ G. We write N EG or N ⊳G.
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Examples 4.6

E.g.1 For any integer n, An, D2n are subgroups of Sn. That’s be-
cause An, D2n and Sn are all groups under function composition, and
An and D2n are both subsets of Sn.
An⊳Sn. This follows from the fact that if φ, ρ are two permutations,
then πρ = ρπρ−1 has the same parity as π.

ButD2n 6⊳Sn, except when n = 3. It’s easy to see this when n = 4, i.e.
that D8 6⊳S4. We choose x = (1, 2, 3, 4) ∈ D8 and g = (1, 2) ∈ S4.
Then xg = (1, 2)(1, 2, 3, 4)(1, 2) = (1, 3, 4, 2) 6∈ D8.

The set of odd permutations in Sn is not a subgroup of Sn, because
it’s not a group. The product of two odd permutations is even.
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E.g.2 The dihedral group D8 is a subgroup of group GL2(R) of invert-
ible 2× 2 matrices, and quaternion group Q8 a subgroup of the group
GL2(C). For all are groups under matrix multiplication and clearly D8
is a subset of GL2(R), Q8 is a subset of GL2(C). Neither subgroup
is normal, e.g. where

A =

(

0 1
1 0

)

, B =
1

2

(

1
√
3√

3 −1

)

,

A is within D8, but BAB−1 is not.
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E.g.3 For any integer m, mZ = {mx : x ∈ Z} is a subgroup of Z.
For mZ ⊆ Z and both are groups under addition of integers. Then
since Z is an abelian group, for any x, g ∈ Z, xg = x. So certainly
mZ⊳ Z.

Note that subgroups are always normal in an abelian group.

E.g.4 For any group G, {e} (which we may call either the trivial or
the identity subgroup) and G are always normal subgroups.
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E.g.5 For any subset X of G, the smallest subgroup of G containing
X is the set of all products of powers of elements of X and their
inverse. It’s called the subgroup generated by X , and is written
〈X〉.
e.g. In S4,

〈(1, 2, 3)〉 = {(), (1, 2, 3), (1, 3, 2), }
〈(1, 2), (3, 4)〉 = {(), (1, 2), (3, 4), (1, 2)(3, 4)}
〈(1, 2), (2, 3)〉 = {(), (1, 2), (2, 3), (1, 2, 3), (1, 3, 2)}

67



Definition 4.7Where G is a group, the centre of G is defined to be

Z(G) = {g ∈ G : gx = xg, ∀x ∈ G}
Proposition 4.8 Z(G) is a normal subgroup of G.

Proof: We need to check 4 things.

(a) that e ∈ Z, i.e. that ex = xe for all x ∈ G. This is immediate

(b) that if g ∈ Z then g−1 ∈ Z, This is clear, since

gx = xg ⇐⇒ g−1(gx)g−1 = g−1(xg)g−1 ⇐⇒ xg−1 = g−1x

(c) that if g1, g2 ∈ Z then g1g2 ∈ Z. This is clear, since

g1x = xg1 and g2x = xg2 ⇒ g1g2x = g1xg2 = xg1g2
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(d) that if g ∈ Z and y ∈ G then ygy−1 ∈ Z. This follows immedi-
ately from the fact that ygy−1 = gyy−1 = ge = g.

�

Examples 4.9

For all n, Z(Sn) = Z(An) = {()}.
Z(D8) = {(), (1, 3)(2, 4)}. In general |Z(D2n)| = 1 or 2.

The centre of GL(n,R) is the subgroup of so called scalar matrices,
i.e., the diagonal matrices with all diagonal entries equal.

Any free group has trivial centre.

For any abelian group G we have Z(G) = G.
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4.4 Homomorphisms and isomorphisms

Definition 4.10 Given groups G,H , with binary operations ◦, ∗, a
map φ from G to H is called a homomorphism if,

∀x, y ∈ G, φ(x ◦ y) = φ(x) ∗ φ(y). (∗)
The set φ(G) = {φ(g) : g ∈ G} is called the homomorphic image
of G under φ.

A homomorphism which is bijective is called an isomorphism. When
there is an isomorphism from G to H , G and H are said to be iso-
morphic, and we write G ∼= H .

We call the defining rule (*) for a homomorphism the product rule.
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NB.1 Where juxtaposition is used to denote both binary operations
(as is usual), the product rule for a homomorphism simply reads

φ(xy) = φ(x)φ(y).

NB.2 It follows from the fact that every bijection has an inverse that
whenever G is isomorphic to H then H is isomorphic to G.

It is elementary to show that,

(a)Where eG, eH are the identities of G,H , φ(eG) = eH ,

(b) for all x ∈ G, φ(x−1) = φ(x)−1.
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Examples 4.11

E.g.1 The determinant map on GLn(R), that maps every matrix to
its determinant, is a homomorphism from GLn(R) to (R \ {0},×). It
is well known that the determinant map satisfies the product rule

det(AB) = det(A) det(B).

E.g.2

WhereG1 =

{(

b a
0 b

)

: a, b ∈ R, b 6= 0

}

, G2 =

{(

1 a
0 1

)

: a, b ∈ R

}

,

the map φ : G1 → (R,+) defined by

φ

((

b a
0 b

))

= a/b
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is a homomorphism, and its restriction to G2 is an isomorphism.

To verify that φ is a homomorphism, we need to verify the product
rule.

φ

((

b a
0 b

)(

d c
0 d

))

=

φ

((

b a
0 b

))

+ φ

((

d c
0 d

))

=

It’s elementary to see from the definition of φ|G2
that it is both sur-

jective and injective, and hence an isomorphism.
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4.5 The kernel and image of a homorphism

Definition 4.12Where φ : G → H is a homomorphism between
groups, we define the kernel of φ, ker(φ), to be the set of elements of
G mapped by φ to the identity, that is, ker(φ) = {g ∈ G : φ(g) = eH}

Examining the kernel of a homomorphism helps us to identify isomor-
phisms.

Proposition 4.13 A homomorphism φ : G → H is injective ⇐⇒
ker(φ) = {e}
Proof: φ(x) = φ(y) ⇐⇒ φ(xy−1) = φ(e) ⇐⇒ xy−1 ∈ ker(φ).
�
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Examples 4.14

We look at the examples from 4.11.

E.g.1 The kernel of the determinant map

det : GLn(R) → (R \ {0},×)

is the subgroup SLn(R) of matrices of determinant 1, known as the
special linear group.

E.g.2 ker(φ) is the subgroup of scalar matrices,
while ker(φ|G2

) = {I2}, verifying our claim that φ|G2
is injective.
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Proposition 4.15 For any homomorphism φ from a group G to a
group H ,

(a) ker(φ) is a normal subgroup of G,

(b) φ(G) is a subgroup of H .

Proof:

(a) Since φ(eG) = eH , by definition eG ∈ ker(φ)

Since φ(x−1) = φ(x)−1,

x ∈ ker(φ) ⇒ φ(x) = eH ⇒ φ(x−1) = eH ⇒ x−1 ∈ ker(φ).

And x, y ∈ ker(φ) ⇒ φ(x) = φ(y) = eH
⇒ φ(xy) = φ(x)φ(y) = eH ⇒ xy ∈ ker(φ).
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For x ∈ ker(φ) and g ∈ G,

φ(gxg−1) = φ(g)φ(x)φ(g)−1 = φ(g)eHφ(g)−1 = φ(g)φ(g)−1 = eH

So gxg−1 ∈ ker(φ).

(b) eH = φ(eG) is certainly in φ(G).

For x ∈ φ(G), we see that x = φ(g) for some g ∈ G, and then
x−1 = φ(g−1) ∈ φ(G).

For x, y ∈ φ(G). we see that x = φ(g1), and y = φ(g2), for some
g1, g2 ∈ G. And then xy = φ(g1g2) ∈ φ(G).

�
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5 Cyclic groups

Most groups have a lot of cyclic subgroups.

Definition 5.1 Let G be a group with identity element e, and let x
be an element of G. Then the (cyclic) group 〈x〉 generated by x is the
set {xn : n ∈ Z} of all positive and negative powers of x.

Definition 5.2 A group G is cyclic if G = 〈x〉 for some x.

Examples 5.3

E.g.1 The permutation group {(), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}
is a cyclic subgroup of S4, generated by (1, 2, 3, 4) or by (1, 4, 3, 2).
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E.g.2 The additive group of the integers (Z,+) is cyclic, generated
by 1, also by its inverse -1.
E.g,3 The additive group of the integers mod m is cyclic, generated
by 1, also by its inverse, m− 1.

In fact there aren’t very many different cyclic groups.

Proposition 5.4 Let G be a cyclic group 〈x〉. If |x| is infinite then
G is isomorphic to (Z,+). Otherwise, where |x| = m, G is isomorphic
to the additive group of the integers modulo m, and so has order m.

From now on we’ll call the unique cyclic group of order m Cm, and
the infinite cyclic group C∞ or Z.
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Proof: If x has infinite order. we define φ : Z → 〈x〉 by φ(k) = xk,
which is clearly well defined and surjective. To see that φ is injective,
observe that

φ(r) = φ(s) ⇒
⇒
⇒

Then since φ(r + s) =

=

φ is an isomorphism.
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If x has finite order m, we define φ : Zm → 〈x〉 by φ(a) = xa. This is
clearly well defined and surjective. That φ is an injection follows from

φ(a) = φ(b) ⇒
⇒
⇒

Finally we need to verify that φ satisfies the multiplication rule. This
follows from the observation that for a, b ∈ Zm, a+m b = a+ b− ǫm
(for ǫ = 0 or 1). Hence

φ(a +m b) =

=

and so φ is an isomorphism. �
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6 Generating sets and presentations

6.1 Generating sets

Definition 6.1Where G is a group, and X is a subset of G, the
subgroup 〈X〉 generated by X is the set of all products of elements
of X and their inverses.

If G = 〈X〉, then we say that X is a generating set for G. If
G = 〈X〉 for some finite setX , we say thatG is finitely generated.
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Examples 6.2

E.g.1 Every cyclic group is finitely generated, by 1 element.

E,g,2 None of (Q,+), (R,+), (C,+) is finitely generated. Nor is
(Q \ {0},×), (R \ {0},×), (C \ {0},×).

E.g.3 Any finite group is finitely generated - the set of all elements is
a generating set.
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E.g.4 The symmetry group of the square with vertices at (±1,±1) is
finitely generated by the set of 2 elements consisting of

• rotation anticlockwise through π/2 (call this element α)

• reflection in the x-axis (call this element β).

It’s not hard to see that the elements of the group are all found in the
set

{e, α, α2, α3, β, αβ, α2β, α3β}
E.g.5 The group of all rotations about the origin in 2-dimensions is
not finitely generated.
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E.g.6 The symmetric group Sn is generated by any one of the following
sets:

{(1, 2), (1, 3), (1, 4), . . . , (1, n)}
{(1, 2), (2, 3), (3, 4), . . . , (n− 1, n)}
{(1, 2), (1, 2, . . . , n)}
{(1, n), (1, 2, . . . , n)}

So in particular S3 is generated by {1, 2), (1, 3)} or by {(1, 2), (1, 2, 3)},
and S4 is generated by {(1, 2), (2, 3), (3, 4)} or by {(1, 4), (1, 2, 3, 4)}.
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6.2 Presentations

When we try and write down the elements of a finitely generated group,
in general we see that some elements can be written in more than one
way as a product of the generators and their inverses.

For instance, in the symmetry group of the square, given as an example
above, it’s obvious that αα−1 = α−1α = e, ββ−1 = β−1β = e, so
certainly α = αα−1α = αββ−1 . . ..

Also it’s rather easy to see that α4 = e, β2 = e, so α = α5 = αβ2 . . ..

And it’s not hard to show that α3β = βα, αβ = βα3, α2β = βα2.
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Exercise 6.3 Suppose that {a, b} generates a group G, in which the
equations a4 = e, b2 = e, and a3b = ba hold. Then every element of
G is equal to an element of the set {e, a, a2, a3, b, ab, a2b, a3b}.

Solution: Since G is generated by {a, b}, every element of G can be
written as a product of integer powers of a and b.

Since a4 = e, and b2 = e, we have a−1 = a3, b−1 = b, and so every
element of G is equal to a product of non-negative powers of a and b.

Since ba = ab3 any product of non-negative powers of a and b is equal
to a product of the form aibj, with i ≥ 0, j ≥ 0.

Since a4 = e and b2 = e, any product of the form aibj with i ≥ 0,
j ≥ 0 is equal to such a product with 0 ≤ i ≤ 3 and j = 1 or 0. �
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Of course the symmetry group of the square is an example of a group
G as above, for which a = α, b = β. But it is not the only example.

For set a = α2, b = β. Then a4 = α8 = e, b2 = β2 = e, and
a3b = α6β = α2β = βα2 = ba.

But 〈α2, β〉 is a subgroup of just 4 elements of D8.

In fact the symmetry group of the square is the biggest example sat-
isfying the given conditions. In all other examples, there are fewer
than 8 elements, and there are equations holding between products of
elements that are not deducible from the given 3.

We say that the equations a4 = e, b2 = e, a3b = ba define the sym-
metry group of the square.
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Definition 6.4Where X is a finite set, and R be a finite set of
equations relating pairs of products of powers of elements of X , there
is a group G with generating set X in which the only equations which
hold between products of powers of elements of X are deducible from
the equations in R. We write

G = 〈X | R〉,
and say that the pair (X,R) is a finite presentation for G.

A group which is defined in this way is called finitely presented.
The set R is called its set of defining relations. Its elements are
called relations, and if w = e is a relation in R, then w is called a
relator.
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NB. I haven’t actually proved that every pair (X,R) really does define
a group. The proof is too hard for this course.

Examples 6.5

E.g.1 The symmetry group of the square is isomorphic to the finitely
presented group

〈a, b | a4 = e, b2 = e, a3b = ba〉.
E.g.2 The cyclic group Cm is isomorphic to the finitely presented
group

〈a | am = e〉
The infinite cyclic group Z has presentation 〈a |〉.
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E.g.3 The free group F2 on {a, b} has presentation 〈a, b |〉 and the
free abelian group Z2 on {a, b} has presentation 〈a, b | ab = ba〉.
E.g.4 S3 has presentation

〈a, b | a3 = b2 = e, ba = a2b〉,
on generators a = (1, 2, 3), b = (1, 2). Alternatively, it has presentation

〈x, y | x2 = y2 = (xy)3 = e〉,
on generators x = (1, 2), y = (2, 3).

S4 has presentation
〈x, y, z | x2 = y2 = z2 = (xy)3 = (yz)3 = (xz)2 = e〉,

on generators x = (1, 2), y = (2, 3), z = (3, 4).
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S4 also has presentation

〈p, q, r | p4 = q3 = r2 = pqr = e〉
on generators p = (1, 2, 3, 4), q = (3, 2, 1), r = (1, 4).
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7 Cosets and Lagrange’s theorem

7.1 Cosets. The proof

The aim of this section is to prove the following theorem.

Theorem 7.1 (Lagrange’s theorem) If G is a finite group and H
is a subgroup of G, then the order of H divides the order of G.

The theorem will be proved by showing that G can be cut up into
disjoint pieces each of size |H|, called cosets. If there are k of these,
then

|G| = k|H|.
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Definition 7.2 If G, H are groups, with H ⊆ G, and g ∈ G, the
left coset gH and right coset Hg are defined to be the sets

gH = {gh : h ∈ H}
Hg = {hg : h ∈ H}

We write G/H for the set of left cosets of H in G, and H\G for the
set of right cosets of H in G.

Examples 7.3

E.g.1 Where S4 = G ⊇ H (isomorphic to D8) given by

H = {e, (1, 2, 3, 4), (1, 4, 3, 2), (1, 3), (2, 4), (1, 2)(3, 4),
(1, 4)(2, 3), (1, 3)(2, 4)},
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then H(1, 2, 3, 4) =

1, 2, 3, 4)H =

H(1, 2) =

(1, 2)H =

H(1, 2, 4) =

(1, 2, 4)H =

95



E.g.2 Let G = GLn(R) the group of all n×n matrices with non-zero
determinant, and H = SLn(R), the subgroup of all n× n matrices of
determinant 1.

Then for any g ∈ GLn(R), gH is the set of all n × n matrices with
the same determinant as g. And so is Hg.
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In the examples, we can observe the following facts about cosets, which
are straightforward to prove.

Proposition 7.4 Let G be a group, and H a subgroup of G. Then,
for all g, g′ ∈ G, h ∈ H ,

(a) g′ ∈ gH ⇐⇒ g−1g′ ∈ H .

(b) g ∈ gH .

(c) If h ∈ H , then hH = H .

(d) If g′ ∈ gH , then gH = g′H .

(e) If gH ∩ g′H 6= ∅, then gH = g′H .

(f) If |H| is finite, then |H| = |gH|.
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Proof: (a),(b),(c),(d) follow immediately from the definition of gH .

(e) follows from (d). For if g′′ ∈ gH ∩ g′H , then by (d), gH = g′′H
and g′′H = g′H .

To prove (f) we observe that the rule h 7→ gh defines a bijection from
H to gH .

� A parallel result is true for right cosets.
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Proof: (of Lagrange’s theorem).

Since g ∈ gH , G is a union of the left cosets of H . And since two
cosets that intersect must be equal, this union is a disjoint union.

Since every coset has |H| elements, |G| = k|H|, where k is the number
of distinct left cosets of H in G. �

NB This proof would work just as well with right cosets. Hence it is
clear that for |G| < ∞, the numbers of left and right cosets are both
equal to |G|/|H|. Even when G is infinite, the map gH 7→ Hg−1

provides a bijection from G/H to H\G, providing further proof that
the two sets must have the same size. They might be finite even when
G and H are infinite.
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Definition 7.5 For G,H groups and H ⊆ G, we call the number of
distinct left cosets of H in G the index of H in G, and denote it by
the symbol |G : H|.

Examples 7.6

E.g.1 |S4 : D8| = 3.

E.g.2 |GLn(R) : SLn(R)| is infinite. For every real number is the
determinant of some matrix in GLn(R).
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Corollary 7.7 If G is a finite group and x ∈ G, then |x| divides |G|.

Proof: 〈x〉 is a cyclic subgroup of G or order |x|. The result now
follows from Lagrange’s theorem. �

7.2 The converse of Lagrange’s theorem

The converses of Lagrange’s theorem and its corollary are not in general
true. They hold in finite cyclic and abelian groups. But in general,
where G is a finite group, with m dividing |G|, G need not have a
subgroup of order m, and even if it does, it need not have an element
of order m.
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Examples 7.8

E.g.1

A4 = {(), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2, 3),
(1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3)}

has no subgroup of order 6.

For suppose that H is a subgroup of order 6. Certainly () ∈ H . Since
H contains 6 elements, and the group A4 contains only 3 elements
of order 2, H must contain an element of order 3. WLOG, we may
assume that (1, 2, 3) ∈ H . Then (1, 3, 2) = (1, 2, 3)2 ∈ H .
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Suppose that H contains another element y of order 3. Then it also
contains its inverse, and by the symmetry of the set A4, we can assume
that those two elements are (1, 2, 4) and (1, 4, 2). But then H must
contain both (1, 2, 3)(1, 4, 2) = (1, 4, 3) and its inverse (1, 3, 4), and
hence |H| ≥ 7 > 6,

SoH cannot contain a third element of order 3, and so must contain all
3 elements of order 2. In particular (1, 2)(3, 4) ∈ H, and so (1, 3, 4) =
(1, 2, 3)(1, 2)(3, 4) ∈ H ; we have a contradiction.
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E.g.2 S4 has a subgroup (S3) of order 6, but no element of order 6.

An element π of order 6 in S4 could not involve only 2-cycles or only
3-cycles, but would have to involve either 6-cycles (possibly with other
cycles) or a mixture of 2-cycles and 3-cycles.

In that case the disjoint cycles of π would have to involve at least 5
elements of {1, 2, 3, 4}.

104



8 Normal subgroups and quotient groups

8.1 Recognising normal subgroups

The following gives new ways to recognise normal subgroups.

Note that (3) is the definition for a normal subgroup from 4.5.

Proposition 8.1 Given groups G ⊇ H , the following are equivalent.

(1) ∀g ∈ G, Hg = gH .

(2) Every left coset of H in G is a right coset of H in G.

(3) ∀g ∈ G, Hg ⊆ H .

(4) ∀g ∈ G, Hg = H .
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Proof: (1) ⇒ (2) and 4 ⇒ 3 are immediate. To complete the proof
we verify (2)⇒ (1) (1)⇒(4) and (3)⇒ (1), in that order.

Suppose that gH is a right coset Hg′. Since gH intersects Hg (in a
set containing g), and distinct right cosets are disjoint, we must have
Hg = Hg′ = gH . Hence (2) ⇒ (1).

We can deduce Hg = H from gH = Hg by multiplying that equation
on the right by g−1: Hg = gHg−1 =
So (1) ⇒ (4).

We can deduce gH ⊆ Hg from gHg−1 ⊆ H , by multiplying on the
right by g, and similarly Hg ⊆ gH from g−1Hg ⊆ H . So (3) ⇒ (1),
�
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We’ll check normality in some examples.

Examples 8.2

E.g.1 H = {(), (1, 2, 3), (1, 3, 2)} is a normal subgroup of S3. For
since |S3|/|H| = 2, there are 2 right cosets, 2 left cosets, H and one
other. In each case the second coset must be the complement S3 \H .
Hence this is both a left and a right coset, (1) holds, and H is normal.

E.g.2

H = {(), (1, 2, 3, 4), (1, 4, 3, 2), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2)(3, 4),
(1, 3), (2, 4)}

is not normal in S4. We computed the right and left cosets in Examples
7.3, and can see that they don’t match up.
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E.g.3 SLn(R) ⊳ GLn(R). We already observed that two matrices in
GLn(R) are in the same (right or left) coset of SLn(R) if they have the
same determinant. So certainly the right and left cosets match up.

E.g.4 V = {(), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} is normal in S4.
We could compute and compare the 6 right and 6 left cosets. But we
can check this much more quickly, once we realise that the conjugate of
a k-cycle (i1, · · · , ik) by a permutation π is (π(i1), · · · , π(ik)), hence
a k-cycle. Hence any conjugate of any one of the elements of the set

{(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
is also in that set.
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The first example points to a more general result,

Corollary 8.3 (of Proposition 8.1) If G,H are groups with H a
subgroup of index 2 in G, then H ⊳G.

Proof: just in the first example of 8.2 �

Example 8.4

An is normal in Sn.
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8.2 Constructing quotient groups

The special properties that normal subgroups have allow us to factor
them out and build quotient groups.

Theorem 8.5 For groups G,N with N ⊳G, the rule

xN • yN = xyN

defines a binary operation on G/N that makes it a group.

Proof: We check first that we have a binary operation.

xN = uN, yN = vN ⇒ ∃m,n ∈ N, u = xm, v = yn.

So uv = xmyn = xyy−1myn = xymy−1
n ∈ xyN ; and uvN = xyN.
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Next we have to verify that the three group operations hold.

We inherit associativity of • from G, for

(xN • yN ) • zN = (xyN ) • zN = (xy)zN = x(yz)N

= xN • yzN = xN • (yN • zN ).

We see that N = eN is an identity, since

eN • xN = exN = xN = xeN = xN • eN.

And we see that x−1N is an inverse for xN , since

xN • x−1N = xx−1N = eN = x−1xN = x−1NxN.

�
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Examples 8.6

E.g.1

G = {(), (1, 2, 3, 4), (1, 4, 3, 2), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2)(3, 4),
(1, 3), (2, 4)}, N = {(), (1, 3)(2, 4)}

We met this pair of groups as an example in 4.9, where we observed
that N is the centre of G; so it is certainly normal in G.

Now the left cosets of N in G are

N = {(), (1, 3)(2, 4)} = (1, 3)(2, 4)N

(1, 3)N = {(1, 3), (2, 4)} = (2, 4)N

(1, 2, 3, 4)N = {(1, 2, 3, 4), (1, 4, 3, 2)} = (1, 4, 3, 2)N

(1, 2)(3, 4)N = {(1, 2)(3, 4), (1, 4)(2, 3)} = (1, 4)(2, 3)N
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Clearly G/N is a group of order 4. We observe the following.

A2 = (1, 3)N (1, 3)N = (1, 3)2N = ()N = N

B2 = (1, 2, 3, 4)N (1, 2, 3, 4)N = (1, 2, 3, 4)2N = (1, 3)(2, 4)N = N

C2 = (1, 2)(3, 4)N (1, 2)(3, 4)N = ((1, 2)(3, 4))2N = ()N = N

AB = (1, 3)N (1, 2, 3, 4)N = (1, 2)(3, 4)N = C

BA = (1, 2, 3, 4)N (1, 3)N = (1, 4)(2, 3)N = C = AB

So
G/N = {N,A,B,AB}

where N is the identity, AB = BA, and A2 = B2 = (AB)2 = N .

In fact G/N is isomorphic to the subgroup

{(), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
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of G. For define φ by

φ(N ) = (), φ(A) = (1, 2)(3, 4), φ(B) = (1, 3)(2, 4), φ(AB) = (1, 4)(2, 3)

φ is clearly a bijection between the two groups. To verify that it’s an
isomorphism we simply have to check that

φ(A2) = φ(A)2, φ(B2) = φ(B)2,

φ(AB) = φ(A)φ(B), φ(BA) = φ(B)φ(A)

These are easy to check.
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E.g.2 The quotient of (Z,+) by the normal subgroup mZ (defined
as mZ = {mx : x ∈ Z}) is isomorphic to the additive group of
the integers mod m. And in fact the quotient construction gives a
rather more natural definition of that group than the one we gave in
Subsection 3.4.

Of course the elements of the quotient are sets of integers, the cosets
a +mZ, and the binary operation is defined by the rule

(a +mZ) + (b +mZ) = (a + b) +mZ.

It is standard to call a + mZ the congruence class of a mod m,
and write it as (a)m.
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8.3 The first isomorphism theorem

In fact we get a normal subgroup and a quotient group whenever we
have a homomorphism φ : G → H .

We recall from Proposition 4.15 that in this situation ker(φ) is a normal
subgroup of G, and φ(G) is a subgroup of H . In fact, we have more
than this.

Theorem 8.7 (First isomorphism theorem) Given groups G,H
and a homomorphism φ : G → H , we have

G/ker(φ) ∼= φ(G).
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Proof: Let N = ker(φ), for notational convenience.

Now for x, y ∈ G, xN = yN ⇒ y−1x ∈ N = ker(φ),

and so φ(x) = φ(y(y−1x)) = φ(y)φ(y−1x) = φ(y).

So we can define a map θ : G/N → φ(G) by θ(xN ) = φ(x).

It’s clear from the definition that θ is surjective. And θ is injective,
since

θ(xN ) = θ(yN ) ⇒ φ(x) = φ(y) ⇒ φ(y−1x) = eH
⇒ y−1x ∈ ker(φ) = N ⇒ xN = yN.

We see that θ is a homomorphism by verifying the product rule, making
use of the fact that φ is a homomorphism:

θ(xN • yN ) = θ(xyN ) = φ(xy) = φ(x)φ(y) = θ(xN )θ(yN ).
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Therefore θ is an isomorphism from G/N to φ(G). �

Example 8.8

Let φ be the determinant map from G = GLn(R) to (R \ {0},×).
Then φ(G) is the whole of (R \ {0}). And ker(φ) is SLn(R). So we
see that GLn(R)/SLn(R) ∼= (R \ {0},×).
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8.4 Lifting subgroups from a quotient

The quotient of G by a normal subgroup N is in some sense just the
top part of G. Everything in the quotient group is also to be found in
G. Hence the following result (which we won’t prove) should not be
surprising.

Proposition 8.9Where G is a group and N a normal subgroup of
G, then the set of subgroups of G/N can be described as

{H/N : H ≤ G,N ≤ H}
Further, where H is a subgroup of G containing N , H is a normal
subgroup of G if and only if H/N is a normal subgroup of G/N .
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This result can sometimes help us to find subgroups of a group, using
information about subgroups of a factor group.

Example 8.10 (Subgroups of S4)
Elements of order 2, 3 and 4 generate cyclic subgroups, as follows:-

• 6 subgroups such as 〈(1, 2)〉 = {(), (1, 2)},
• 3 subgroups such as 〈(1, 2)(3, 4)〉 = {(), (1, 2)(3, 4)}
• 4 cyclic subgroups such as 〈(1, 2, 3)〉 = {(), (1, 2, 3), (1, 3, 2)},
• 3 cyclic subgroups such as

〈(1, 2, 3, 4)〉 = {(), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}.
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Pairs of involutions generate three kinds of subgroups.

Any 2 disjoint 2-cycles generate an abelian subgroup of order 4, e.g.

〈(1, 2), (3, 4)〉 = {(), (1, 2), (3, 4), (1, 2)(3, 4)}.
Any 2 intersecting 2-cycles generate a subgroup isomorphic to S3, e.g.

〈(1, 2), (1, 3)〉 = {(), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}
Any 2 products of two disjoint 2-cycles generate the Klein 4-group

V = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉
= {(), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), },

which is normal.
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The subgroups containing V , can be found by considering the quotient
S4/V , which is isomorphic to S3.
Since S3 has 3 subgroups of order 2 and one of order 3, S4 must
have 3 subgroups of order 8 that contain V and one of order 12 that
contains V . These turn out to be 3 subgroups isomorphic to D8 and
the alternating group A4.

We have not proved it, but in fact, these subgroups, together with S4
itself and the identity subgroup, form the full collection of subgroups
of S4.
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9 Group actions

9.1 Introducing actions

Frequently groups are studied in mathematics because of their actions
on other mathematical objects. The actions of groups on themselves
are also important, provide some powerful tools in group theory.

Definition 9.1 An action of a group G on a set Ω is defined to be
a homomorphism from G to S(Ω). G is said to act on Ω.

In this context, the product rule for a homomorphism θ, θ(g1g2) =
θ(g1)θ(g2), means that the image of the product g1g2 has the same
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effect on Ω as the composite of the images of g1 and g2, that is,

θ(g1g2)(α) = θ(g1)(θ(g2)(α))∀α ∈ Ω.

In order to avoid cumbersome notation, we prefer to represent the
image of an element g ∈ G in S(Ω) not by θ(g) but by g itself. And
we’ll often write g[α] rather than g(α) (or θ(g)(α)), to avoid confusion
with other uses of parentheses.

Then we define an action by specifying a rule α 7→g g[α] for each ele-
ment g ∈ G. Using this notation, the product rule for a homomorphism
now translates as

(g1g2)[α] = g1[g2[α]] ∀α. (∗∗)
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Given a set of rules α 7→g g[α], in order to verify that we have an
action we need to check first that each such rule defines a permutation
of Ω, second that we have a homomorphism.

If G is finitely generated then specify an action we only need to specify
a rule for each of the generators. The rule for a product of generators
can then be deduced as a composite using the product rule (**).

But to ensure that we really have an action, we still need to check
that the image of each generator acts as a permutation of Ω and that
different products of generators that represent the same element of G
are defined by the rule to act in the same way.
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9.2 The natural action of Sn and its subgroups.

Where G is Sn or one of its subgroups, the identity map provides an
isomorphism from G to itself, and hence an injective homomorphism
from G to a subgroup of Sn. So every subgroup of Sn has an action
on Ω = {1, 2, . . . , n}, which we call its natural action.

Various other actions can be inherited from the natural action, e.g. Sn
and its subgroups also permute the set

(

Ω
2

)

of unordered pairs of

distinct elements from Ω.
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9.3 The actions of S4 on the tetrahedron and the cube

Given a tetrahedron with vertices labelled 1, 2, 3, 4, it is clear that the
natural action of S4 defines an action on the vertices of the tetrahedron
that preserves its structure, and from this actions of S4 on the edges
and faces of the tetrahedron are inherited.

We write the edges and faces as sets of pairs and triples from {1, 2, 3, 4}
Then given generators a = (1, 2), b = (2, 3), c = (3, 4) for S4, the
actions of S4 on the edges and faces are defined as follows:-

{1, 2} 7→a {1, 2}, {1, 3} 7→a {2, 3}, {2, 3} 7→a {1, 3}, {3, 4} 7→a {3, 4}
{1, 2} 7→b {1, 3}, {1, 3} 7→b {1, 2}, {2, 3} 7→b {2, 3}, {3, 4} 7→b {2, 4}
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{1, 2} 7→c {1, 2}, {1, 3} 7→c {1, 4}, {2, 3} 7→c {2, 4}, {3, 4} 7→c {3, 4}
and

{1, 2, 3} 7→a {1, 2, 3}, {1, 2, 4} 7→a {1, 2, 4}, {1, 3, 4} 7→a {2, 3, 4},
{2, 3, 4} 7→a {1, 3, 4},
{1, 2, 3} 7→b {1, 2, 3}, {1, 2, 4} 7→b {1, 3, 4}, {1, 3, 4} 7→b {1, 2, 4},
{2, 3, 4} 7→b {2, 3, 4},
{1, 2, 3} 7→c {1, 2, 4}, {1, 2, 4} 7→c {1, 2, 3}, {1, 3, 4} 7→c {1, 3, 4},
{2, 3, 4} 7→c {2, 3, 4}.
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Now we can construct a cube on the set of vertices

V = {1, 2, 3, 4, 1̄, 2̄, 3̄, 4̄}
for which the set E of edges consists of all pairs {i, j̄} with i 6= j, and
the set F of faces is

F = {1, 2̄, 3, 4̄}, {1, 2̄, 4, 3̄}, {1, 3̄, 2, 4̄}, {1̄, 2, 3̄, 4}, {1̄, 2, 4̄, 3}, {1̄, 3, 2̄, 4}
We see that the vertices i and ī are always opposite each other. See
diagram:-
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From its natural actions on {1, 2, 3, 4} and {1̄, 2̄, 3̄, 4̄}, S4 inherits
actions on the vertices, edges and faces of the cube.

We see that the generator a acts on the vertices as (1, 2)(1̄, 2̄), that
is, as a reflection in the plane through 3, 4̄, 3̄, 4, and b and c act as
(2, 3)(2̄, 3̄) and (3, 4)(3̄, 4̄).

ab acts as

We see that this fixes

and so that ab acts as
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abc acts as

This doesn’t fix any line or plane, and doesn’t correspond to either a
rotation of a reflection. Of course it’s the composite of the reflection
c and the rotation ab.

And in fact if we choose any reflection τ that preserves the cube, then
there’s a rotation ρ for which abc = ρτ .
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9.4 Actions of C2 on the cube

The cyclic group C2 = 〈τ | τ2 = e〉 acts on the vertices of the cube
just described as the antipodal map,that is, the permutation

(1, 1̄)(2, 2̄)(3, 3̄)(4, 4̄).

The action preserves the structure of the cube. And indeed the full
group of symmetries of the cube is the group S4×C2, which contains
S4 and C2 as subgroups, acting on the group as just described.

To see that the rule defines a homomorphism from C2 to S(V ) we only
need to check that τ2 acts as the identity permutation. (In general,
where G = 〈X | R〉, a map from X to S(Ω) defines an action of G on
Ω provided that each relator in R maps to the identity permutation.)
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9.5 A5 acts on the icosahedron
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The diagram shows a framework from which we can build an icosahe-
dron; we just join the free ends of the 5 edges labelled f1, . . . , f5 to
a single point behind the figure.

We can examine the effect of various symmetries of that icosahedron
on the 30 edges.

The rotation α mapping a1 to a2, through 2π/5 about an axis joining
the central vertex to the one at the back, acts on the 30 edges as the
permutation

(a1, a2, a3, a4, a5)(b1, b2, b3, b4, b5)(c1, c2, c3, c4, c5)

(d1, d2, d3, d4, d5)(e1, e2, e3, e4, e5)(f1, f2, f3, f4, f5).
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The reflection β in the plane through the edges a1 and f1 acts on the
30 edges as the permutation

(a1)(b1)(e1)(f1)(c1, d1)(a2, a5)(a3, a4)(b2, b5)(b3, b4)

(c2, d5)(c3, d4)(c4, d3)(c5, d2)(e2, e5)(e3, e4)(f2, f5)(f3, f4).

The rotation γ mapping a1 to b3, through 2π/3 about an axis through
the centre of the triangle with edges a1, b3, a5, acts on the 30 edges
as the permutation

(a1, b3, a5)(a2, d2, b2)(a3, c5, d1)(a4, b4, c4)(b1, d3, e5)

(b5, e1, e3)(c1, f3, d5)(c2, e2, f2)(c3, f5, f1)(d4, f4, e4).
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In fact each of α, β, γ permutes the following 5 sets of 6 edges:-

{a1, b1, c1, d1, e1, f1}, {a2, b2, c2, d2, e2, f2}, {a3, b3, c3, d3, e3, f3}.
{a4, b4, c4, d4, e4}, {a5, b5, c5, d5, e5, f5}.

Any 2 edges in each set of six are either parallel or orthogonal. We can
call the sets 1,2,3,4,5.

Then we see that α permutes the 5 sets as (1, 2, 3, 4, 5), β as (2, 5)(3, 4),
and γ as (1, 3, 5). Each of those permutations is even, so in A5. In fact
we can see that every even permutation of {1, 2, 3, 4, 5} corresponds to
some symmetry of the icosahedron (in fact to two different symmetries,
as we shall see soon).
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9.6 C2 acts on the icosahedron

C2 = 〈τ | τ2 = 1〉 acts on the vertices, edges and faces of the
icosahedron.

The antipodal symmetry maps each vertex, edge or face to the vertex,
edge or face opposite it on the icosahedron. Clearly that symmetry
has order 2. In that action C2 preserves the sets 1, 2, 3, 4, 5 of six
edges, that is, acts as the identity permutation on the set {1, 2, 3, 4, 5}.
Indeed, for any symmetry ρ of the icosahedron, ρ and ρτ correspond
to the same permutation in A5.

NB for any choice of 3 mutually perpendicular planes Π1,Π2,Π3, each
bisecting the icosahedron, the antipodal map can be decomposed as
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the composite of successive reflections in the three planes.

9.7 The group of the dodecahedron

Each of the 30 edges of the dodecahedron that is dual to the icosahe-
dron is perpendicular to a corresponding edge of the icosahedron. So
it’s clear that the 30 edges of the dodecahedron also fall into 5 sets of
6 edges that are mutually parallel and orthogonal. Hence we see the
same action of A5 for the dodecahedron, and similarly the antipodal
map provides an action of C2.

This explains why the symmetry groups of both icosahedron and do-
decahedron are isomorphic to A5 × C2.
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9.8 A useful action of Cm

Let A be any set. We define an action of Cm = 〈t|tm = e〉 on the set
Am of all m-tuples of elements from A as follows.

(a1, a2, . . . , am) 7→t (a2, a3, . . . , am, a1)

We deduce from the product rule that

(a1, a2, . . . , am) 7→ti (ai+1, ai+2, . . . , am, a1, . . . , ai)

It is straightforward to verify that the rules define permutations of the
set. And we see that tm acts as the identity permutation, as required.

We’ll meet this action when we prove Cauchy’s theorem, Theorem 10.1.
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9.9 Action of Z2 on R2

The free abelian group 〈a, b | ab = ba〉 acts on the Euclidean plane
R2 via

(x, y) 7→a (x + 1, y), (x, y) 7→b (x, y + 1).

We check easily that these two maps are bijections from R2 to R2.

Then since a[b[(x, y)]] = a[(x, y + 1)] = (x + 1, y + 1)

= b[(x + 1, y)] = b[a[(x, y)]],

we see that the two maps commute.

This verifies that we have defined an action of Z2 on R2.

This group is the fundamental group of the torus.
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9.10 The coset action

Proposition 9.2 For groups G,H with H ⊆ G, the set of rules
xH 7→g gxH defines an action of G on the set G/H of left cosets of
H in G.

Proof: First we verify that the maps are permutations of G/H .
The map xH 7→ gxH is clearly surjective since for any coset yH ,
yH = g[(g−1y)H ], and injective since

g[x1H ] = g[x2H ] ⇒ gx1H = gx2H

⇒ g−1gx1H = g−1gx2H ⇒ x1H = x2H

So the rules define elements of S(G/H).

141



To verify the product rule (and hence see that we have a homomorphism
from G to S(G/H)), we note that for g1, g2 ∈ G, xH ∈ G/H ,

(g1g2)[xH ] = (g1g2)xH = g1(g2x)H = g1[g2xH ] = g1[g2[xH ]].

�

The coset action is important in the proof of Sylow’s theorems, Theo-
rems 10.3,10.5.
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9.11 The left regular action and Cayley’s theorem

The coset action of G on the cosets of the identity subgroup is com-
monly known as the left regular action. We think of this as an
action of G on itself (although technically the set of cosets of {e} isn’t
actually G but a set of singleton sets in correspondence with G). It’s
defined by the rules

x 7→g gx.

The proof of Cayley’s theorem, one of the big early theorems in group
theory, is based on the left regular action of G

Theorem 9.3 (Cayley’s theorem) Let G be a group. Then G is
isomorphic to a subgroup of S(G).
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Proof: The left regular action of G (proved to be an action by propo-
sition 9.2) provides a homomorphism from G to S(G).

The kernel of that homomorphism is {g : gx = x, ∀x ∈ G}. But
gx = x ⇐⇒ g = e. Hence the homomorphism has trivial kernel,
and so defines an isomorphism from G to a subgroup of S(G). �

The proof may seem very short, but of course it depends on proposition
9.2.
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9.12 Conjugation action

Proposition 9.4 The set of rules x 7→g gxg−1, (that is x 7→g xg)
for x, g ∈ G defines an action of G on itself.

(The proof is left as an exercise for the lecture.)
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Proposition 9.5 For any subgroup H of G, the set of rules

xHx−1 7→g gxHx−1g−1

(that is, Hx 7→g Hgx) for x, g ∈ G, defines an action of G on the set
of conjugates of H .

Proof as exercise.

Note that, for x ∈ G, and a subgroup H , the set {xg : g ∈ G} is
called the conjugacy class of x, and the set {Hg : g ∈ G} the
conjugacy class of H .

The conjugation action is important in the proof of Sylow’s third the-
orem, Theorem 10.6.
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9.13 Stabilisers

Definition 9.6Where G is a group acting on a set Ω and α ∈ Ω,
the stabiliser of α, stab(α), (or stabG(α)) is defined to be

{g ∈ G : g[α] = α}
Sometimes the notation Gα is used instead of stab(α)

Note that the kernel of the action is the intersection of all the stabilisers,
⋂

α∈Ω
stab(α)
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Examples 9.7

E.g.1 For the natural action of S4 on {1, 2, . . . 4},
stab(1) = {(), (2, 3, 4), (2, 4, 3), (2, 3), (2, 4), (3, 4)}
stab(2) =

stab(3) =

stab(4) =

We see that each stabiliser is a subgroup isomorphic to S3. In general,
for Sn in its natural action, the stabiliser of any element of {1, 2, . . . , n}
is a subgroup isomorphic to Sn−1.
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E.g.2 for the natural action of D8, specified as the permutation group

D8 = {(), (1, 2, 3, 4), (1, 4, 3, 2), (1, 3)(2, 4), (1, 2)(3, 4), (1, 4)(2, 3),
(1, 3), (2, 4)},

stab(1) =

stab(2) =

stab(3) =

stab(4) =
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E.g.3 For the action of S4 on the set of unordered pairs from {1, 2, 3, 4},
the stabiliser of {1, 2} is the subgroup 〈(1, 2), (3, 4)〉,
and the stabiliser of {1, 3} is the subgroup 〈(1, 3), (2, 4)〉. Both have
order 4.

When D8 acts on the same set, stab({1, 2})) is the cyclic subgroup
〈(1, 2)(3, 4)〉 of D8, which has order 2,
while stab({1, 3}) is the subgroup 〈(1, 3), (2, 4)〉, of order 4.
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E.g.4 For the coset action of a group G on the set G/H ,

stab(H) = {g : gH = H} = H

stab(xH) = {g : gxH = xH} = {g : x−1gxH = H}
= {g : x−1gx ∈ H} = {g : g ∈ xHx−1}
= xHx−1 =: Hx.

When H is the identity subgroup, i.e. in the case of the left regular
action, the stabiliser of any element x is { g: gx=x}, that is, the
identity subgroup. An action in which every stabiliser is the identity
subgroup is called a regular action (and the left regular action is an
example of such).
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E.g.5 Let a group G act on itself by conjugation. Then, for x ∈ G,

stab(x) = {g : gxg−1 = x} = {g : gx = xg}
This subgroup is called the centraliser of x in G.

E.g.6 Let G be any group, H a subgroup, and let Ω be the conjugacy
class of H in G, with G acting according to the rule

g[Hx] = Hgx, ∀g, x,∈ G

Then the stabiliser of H is

{g ∈ G : Hg = H}
This subgroup is known as the normaliser ofH inG, writtenNG(H).
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Proposition 9.8Where G is a group acting on a set Ω and α ∈ Ω,

(a) stab(α) is a subgroup of G.

(b) if β ∈ G and β = x[α] for x ∈ G, stab(β) = stab(α)x.

Proof:

(a)We need to verify from the definition of the stabiliser that
(1) e ∈ stab(α),
(2) if g1, g2 ∈ stab(α), then g1g2 ∈ stab(α),
(3) if g ∈ stab(α), then g−1 ∈ stab(α),
In order to prove (1), we need to recall that every homomorphism
maps the identity to the identity.
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(b)We verify from the definition that if g ∈ stab(α) then xgx−1 ∈
stab(β), while if h ∈ stab(β) then x−1hx ∈ stab(α).

�
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Examples 9.9

Recall that for the natural action of S4 on {1, 2, 3, 4} the stabilisers of
1 and 4 are the subgroups

stab(1) = {(), (2, 3), (2, 4), (3, 4), (2, 3, 4), (2, 4, 3)}
stab(4) = {(), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}

Both subgroups are isomorphic to S3, and
stab(4) = stab(1)(1,4) = stab(1)(1,4)(2,3) = stab(4)(1,4,3,2) . . .

Each of the three conjugating elements map 1 to 4.

We can examine similarly the other examples in Examples 9.7.
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9.14 Orbits and transitivity

Definition 9.10Where G is a group acting on a set Ω and α ∈ Ω,
the set {g[α] : g ∈ G} is called the orbit of α under the action of
G, written orb(α) or orbG(α), or sometimes Gα. We call the size of
orb(α) its length.

If orb(α) is the whole of Ω then we say that G acts transitively on
Ω. In this case, for any pair of elements β, γ ∈ Ω, there is an element
g ∈ G with g(β) = γ Otherwise we say that G acts intransitively.

NB: Notice that even when G acts intransitively on a set Ω it acts
transitively on each of the orbits of elements α of Ω. Basically the
orbits are the subsets of Ω on which G acts transitively.
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Examples 9.11

E.g.1 The natural action of Sn on {1, 2, 3, . . . , n} is transitive. For
given i, j ∈ Ω,

E.g.2 The left regular action of G on itself is transitive. For given
x, y ∈ G,
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E.g.3 S4 acts transitively on the set

Ω = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.
When i, j, k, l are all distinct, the element g = (i, k)(j, l) maps {i, j}
to {k, l}, while where i, j, k are all distinct the element g = (j, k)
maps {i, j} to {i, k}. But D8 has two orbits on Ω, namely:

That’s not surprising, since D8 is the group of symmetries of a square
with vertices 1,2,3,4, edges {1, 2},{2, 3},{3, 4},{4, 1}.
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E.g.3 S4 has two orbits in its action on the vertices of the cube de-
scribed in Subsection 9.3, the sets {1, 2, 3, 4}, and {1̄, 2̄, 3̄, 4̄}. These
form the vertices of two tetrahedra within the cube. (These are the
white and black tetrahedra we described in the introduction.)

E.g.4 Given groups G,H with H ⊂ G, the left coset action of G on
G/H is transitive, but the same action of the subgroup H on G/H is
not, e.g. {H} is an orbit of length 1.
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9.15 Equivalent actions

Definition 9.12 Let G be a group that acts on two sets Ω1 and
Ω2. We say that the two actions are equivalent if there is a bijection
f : Ω1 → Ω2 with the property that

∀α ∈ Ω1, ∀g ∈ G, f (g[α]) = g[f (α)]

The function f is called an equivalence between the two actions.

Example 9.13

The natural action of S4 on Ω1 = {1, 2, 3, 4} is equivalent to its action
on Ω2 = {a, b, c, d} defined by the rules

a 7→(1,2) b, b 7→(1,2) a, c 7→(1,2) c, d 7→(1,2) d
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a 7→(1,3) c, c 7→(1,3) a, b 7→(1,3) b, d 7→ (1, 3)d

a 7→(1,4) d, d 7→(1,4) a, b 7→ (1, 4)b, c 7→(1,4) c

(Since the elements (1, 2), (1, 3), (1, 4) generate the group the action
of the whole group on Ω2 is defined by the action of these elements).

Define f : Ω1 → Ω2 by f (1) = a, f (2) = b, f (3) = c, f (4) = d.
Then for all i ∈ {1, 2, 3, 4}, for all g ∈ S4, g[f (i)] = f (g[i]).
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Theorem 9.14 Let G be a group, acting transitively on a set Ω. Let
α be an element of Ω, and let H = stab(α). Then the action of G on
Ω is equivalent to the action of G on the left cosets of stab(α) by left
multiplication.

Proof:. Define f : G/H → Ω by f (xH) = x[α]. f will be our
equivalence.

First we check that f is well defined as a function.

Next we verify that f is surjective.
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Also f is injective.

Finally, we see that the two actions are equivalent, since for any g ∈ G,
f (g[xH ]) =.

�

Corollary 9.15Where a finite group G acts on a set Ω and α ∈ Ω,
the length of orb(α) is equal to |G : stab(α)| and must divide |G|.

163



Proof: The action of G on orb(α) is equivalent to its action on the
left cosets of stab(α). Hence in particular the two sets have the same
size. And

|G : stab(α)| = |G|/|stab(α)|,
by Lagrange’s theorem, so the orbit length divides |G|. �

Corollary 9.16 Let G be a group, and x ∈ G. Then the length (.i.e.
size) of the conjugacy class of x is equal to the index of the centraliser
of x in G, which must divide |G|.
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10 Sylow theorems

The results which follow explain to what extent the converse of La-
grange’s theorem is true; their proofs use group actions.

10.1 Cauchy’s theorem

Theorem 10.1 (Cauchy) Suppose that G is a finite group and that
p is a prime dividing |G|. Then G contains an element of order p.

Proof: Let Ω be the set of all p-tuples (x1, x2, . . . , xp) of elements
of G for which x1x2 · · · xp = e. Then |Ω| = |G|p−1 (in such a p-tuple
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x1, . . . xp−1 can be chosen arbitrarily, but then xp is fixed).

Now the cyclic group C = 〈τ | τp = e〉 acts on Ω via the rule

τ [(x1, . . . , xp)] = (x2, x3, . . . , xp, x1)

The length of every orbit of C on Ω must divide |C| = p, and hence
is either 1 or p. Also the sum of all the orbit lengths is |Ω|, which is
divisible by p. Hence the number of orbits of length 1 is divisible by p,
or rather the number of elements of Ω fixed by τ is divisible by p. So
either there are no such elements or there are at least p.

Since (e, e, e, · · · , e) is certainly fixed by τ , there must be another
element. That must have the form (x, x, x, · · · , x) where x 6= e and
(by definition of Ω) xp = e. Then x has order p. �
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Using Cauchy’s theorem 10.1 and Cayley’s theorem 9.3 it is straight-
forward to prove the following.

Proposition 10.2 Let G be a group of order 2n, where n is an odd
integer. Then G has a normal subgroup of order n.

Proof: By Cauchy’s theorem G has an element x of order 2. Now
consider the image of x as a permutation in the symmetric group S(G)
(under the left regular action of Cayley’s theorem). For each g ∈ G,
x[g] = xg, x[xg] = x2g = eg = g. So as a permutation in S(G), x
decomposes as a product of n disjoint 2-cycles. Since n is odd, x is
an odd permutation.
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Now let H be the set of elements of G which correspond to even
permutations of S(G). Then H is a proper subgroup by the above.
So, by earlier results, H is normal of index 2. �

NB This result need not hold when n is even. Recall that A4, which
has order 12, has no subgroup of order 6.
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10.2 Sylow theorems

Theorem 10.3 (Sylow’s first theorem) Let G be a finite group
of order pab for a ≥ 1 some integer b not divisible by p. Then G
contains subgroups of order pr for each r ≤ a.

NB The subgroups of order pa are called the Sylow p-subgroups
of G.

Proof: (due to Wielandt) We consider the action of G defined by the
rule X 7→g gX = {gx : x ∈ X}, on the set Ω of all subsets of G
with pr elements.

|Ω| =
(

pab
pr

)
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Expanding that binomial coefficient as a quotient of products as usual,
and observing that for 0 < i < pr the same power of p divides pab− i
as pr − i, we see that |Ω| is divisible by pa−r but not by pa−r+1.

The sum of the orbit lengths is |Ω|, so there must be an orbit O whose
length k is not divisible by pa−r+1.

Choose X ∈ O, and let H = stab(X). Then |G : H| = k, so
|H| = |G|/k = pab/k. Since pa−r+1 does not divide k, certainly pr

divides |H|, and hence pr ≤ |H|.
Since H = stab(X), for all x ∈ X Hx ⊆ X . So |Hx| ≤ |X|, and
hence |H| ≤ |X| = pr.

So H is a subgroup of G of order pr. �
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Examples 10.4

E.g.1 S3 has order 6 = 2 × 3. There are 3 Sylow 2-subgroups, each
cyclic of order 2, a single, normal Sylow 3-subgroup of order 3.

E.g.2 S4 has order 24 = 23 × 3.

There are 4 Sylow 3 subgroups, each cyclic of order 3.

The Sylow 3-subgroups:
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There are 2 kinds of subgroups or order 2, 3 kinds of subgroups of order
4, e.g.:

There are 3 Sylow 2-subgroups, each isomorphic to D8, each the group
of symmetries of one of the 3 squares with vertices labelled 1, 2, 3, 4,
namely:
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Theorem 10.5 (Sylow’s second theorem) Let G be a group of
order pab for p prime, some a ≥ 1, and b not divisible by p. Then the
Sylow p-subgroups of G are all conjugate.

Proof: Let P,Q be two Sylow p-subgroups of G.

Consider the action of Q on G/P by left multiplication. The length of
each orbit divides |Q| = pa, so is either 1 or a power of p.

But the orbit lengths sum to |G/P | = b, which is not divisible by p.
So there must be an orbit xP of length 1. Then

g ∈ Q ⇒ g[xp] = gxP = xP ⇒ x−1gx ∈ P ⇒ g ∈ xPx−1.

So Q ⊆ Px, and hence, since both Q and Px have order pa, Q = Px.
That is, P and Q are conjugate. �
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Theorem 10.6 (Sylow’s third theorem) Let G be a group of or-
der pab for p prime, some a ≥ 1, and b not divisible by p. Let k be the
number of Sylow p-subgroups of G. Then k divides b and is congruent
to 1 mod p.

Proof: Let Ω be the set of all Sylow p-subgroups, and choose P ∈ Ω.
Let P be a Sylow p-subgroup of G.

Since Ω is a single conjugacy class, k = |Ω| = |G : NG(P )|. Since
P ⊆ NG(P ) ⊆ G, pa divides |NG(P )|, and so k divides b.

Now consider the action of P on Ω by conjugation. Every orbit has
length 1 or a power of p, and P itself is in an orbit of length 1.
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If Q is also in an orbit of length 1, then P ⊆ NG(Q). Then also Q ⊆
NG(Q), so P and Q are both Sylow p-subgroups of NG(Q). Then, for
some x ∈ NG(Q), P = Qx. But x ∈ NG(Q) ⇒ Qx = Q ⇒ P = Q.

So {P} is the only orbit of length 1; all other orbits have length divisible
by p. Then the total length of the union of all the orbits is congruent
to 1 mod p. �
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10.3 Applying the theorems

The following result is also useful.

Proposition 10.7 Suppose that G has precisely one Sylow p-group
H . Then H EG.

Proof: If g ∈ G then Hg is a subgroup of G of the same order as
H , and hence is also a Sylow p-subgroup. So Hg = H for all g ∈ G.
Hence H EG. �
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Exercise 10.8 Let G be a group of order 12. Prove that G has a
normal subgroup of order either 3 or 4.

Solution: The Sylow 3-subgroups ofG have order 3. By Sylow’s third
theorem, there are m of these, where m divides 4 and is congruent to
1 mod 3. So m = 1 or 4.

When m = 1, then H is a normal subgroup of G of order 3.

Otherwise, G has 4 subgroups of order 3, and hence 8 elements of
order 3, and at most 4 other elements. So at most 4 elements of G lie
in Sylow 2-subgroups. Since each Sylow 2-subgroup has order 4, there
can be only be one such subgroup. Hence it is a normal subgroup, of
order 4. �

177



Exercise 10.9 Let G be a group of order pq, where p and q are
primes, and p 6= q, then G has a normal subgroup of order p or q.

Solution: Let H be a Sylow p-subgroup (of order p) and K a Sylow
q-subgroup (of order q). The number m of conjugates of H divides q
and is congruent to 1 mod p, while the number n of conjugates of K
divides p and is congruent to 1 mod q. So if q ≤ p, m = 1, while if
p ≤ q, n = 1. In the first case H ⊳G, in the second case K ⊳G. �

178


