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MAS2216/3216 Enumeration and Combinatorics
Semester 1, 2009/2010

Lecturer: Dr A Duncan

This module is an introduction to Combinatorial Mathematics beginning with counting
(enumeration) problems and moving on to graph theory. Graph theory does not refer to the
familiar notion of the graph of a function but instead concerns collections of objects that
can be visualised as points (vertices) in 3 dimensional space, together with lines (edges)
joining them. Such graphs can be very useful in solving many practical problems. Typical
example are: in a system of roads joining given towns find the shortest network joining
all the towns; find the number of different molecules that have a given chemical formula;
determine the maximal flow from source to sink through a network of pipes. Any of these
problems can be solved by trying all the possibilities; graph theory looks for economical
methods of solution.

Books

1. A Walk Through Combinatorics, M .Bóna (World Scientific).

2. Discrete Mathematics, L. Lovász, J. Pelikan and K. Vestergombi (Springer).

3. Introduction to Graph Theory, R J Wilson (Pearson).

4. Library §511.1, §511.5, §511.6

Notes

The printed notes consist of lecture notes, intended to supplement the notes you make
during the lectures, exercises and a mock exam with solutions. Material given on slides
in the lectures is covered in the printed notes, what is written on the blackboard during
lectures may not be. There should be enough space in the printed notes for you to write
down the notes you take in lectures. The notes, exercises and other course information can
be found on the web at

www.mas.ncl.ac.uk/~najd2/teaching/mas2216/
from where they can be viewed or printed out.

AJ Duncan August 2009
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1 Enumeration

Example 1.1. 1. Two students witness burglar Bill making off from a crime scene in
his getaway car. The first student tells the police that the number plate began with
and R or a P and that the first numerical digit was either a 2 or a 3. The second
student recalls that the last letter was an M or an N. Given that all number plates
have the same format: two capital letters (between A and Z) followed by 2 digits
(between 0 and 9) followed by 3 more letters, how many number plates must the
police investigate.

2. There are 7 people to be seated at a round table. How many seating arrangements
are possible? How many times must they change places so that everyone sits next to
everyone else at least once. What difference does in make if one person always sits
in the same place?

3. A lecturer divides a class of 30 students into 5 groups, not necessarily of the same
size, and then chooses one representative from each group. In how many ways is this
possible? If some of the groups are to be selected to move into another room how
many possibilities are there now?

1.1 A basic counting technique

I have shirts of 3 different colours, trousers of 2 different colours and socks of 5 different

colours. How many different outfits (colour combinations) are available to me?

I have 3 choices of shirt. Given that I’ve made a choice of shirt then

I can choose my trousers in 2 ways: giving 3×2 different possibilities

so far. Now given any one of these possibilities there are 5 choices

of colour for my socks. This means I have 2× 3 × 5 = 30 different

possible outfits.
The general rule is

Lemma 1.2. A task is to be carried out in stages. There are n1 ways of carrying out the
first stage. For each of these there are n2 ways of carrying out second stage. For each of
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these n2 ways there are n3 ways of doing the third stage and so on. If there are r stages
then there are in total n1n2 · · ·nr ways of carrying out the entire task.

1.2 The Pigeonhole Principle

Do any 2 Newcastle students share the same Personal Identification Number (PIN) for

their debit cards? Is your PIN number the same as mine?

Suppose for the sake of argument that every student at Newcastle

University has a bank account with a debit card and so every stu-

dent has a PIN, which is a non-zero 4 digit integer. The number

of PINs is therefore at most 9, 999. There are more than 13200

students and for each of them to have a different PIN requires at

least 13200 PINs. As there are fewer than 10, 000 PINs it must

be that 2 students have the same PIN. Luckily this argument tells

us nothing about which 2 so does not give any information about

whether yours is the same as mine.
More generally we have the following lemma.

Lemma 1.3. If n identical balls are put into k boxes and n > k then some box contains at
least 2 balls.

Proof. If there is at most one ball in each box then the number of
AJD September 18, 2009
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balls is at most k, so n ≤ k. As n > k this cannot be the case and

the result follows.

Returning to the sharing of PINs, is it possible that 3 or more people in Newcastle

share the same PIN?

The popln. of Ncl is at least 145000 and there are fewer than 10, 000

PINs. If every PIN is shared by at most 14 people then 14× 10000

must be smaller than the total population. However the population

is over 145,000 people; so some PIN must be shared by at least 15

people (assuming that everyone has a PIN). This is an example of

the following.

Lemma 1.4. Suppose n identical balls are placed in k boxes and that n > kr, for some
positive integer r. Then some box contains at least r + 1 balls.

Proof. If the number of balls in a box is at most r for all k boxes

then we have at most kr < n balls, a contradiction. Hence some

box contains at least r + 1 balls.

AJD September 18, 2009
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1.3 Permutations

Example 1.5. Suppose that 7 boys dance with 7 girls, all on the dance floor at once. How
many pairings are possible?

Suppose the girls are called g1, . . . , g7 and the boys b1, . . . , b7.

Then pair off the dancers by choosing a partner for g1 first, then for

g2 and so on. There are 7 choices for g1’s partner, 6 for g2’s and so

on. Using Lemma 1.2 we we have 7× 6× 5× 4× 3× 2 = 7! = 5040

possible pairings. Notice that a pairing is a unique assignment of

each girl to a boy. Thus a pairing is a map from the set {g1, . . . , g7}

to {b1, . . . , b7}. Clearly this map is a bijection and conversely, every

bijection gives a pairing.

Definition 1.6. Some revision: a map f : X → Y is called

1. an injection if a 6= b implies f(a) 6= f(b), for all a, b ∈ X;

2. a surjection if, for all y ∈ Y , there is x ∈ X with f(x) = y;

3. a bijection if f is an injection and a surjection.

Also one-one means the same as injection and onto means the same as surjection.

Definition 1.7. A bijection from a set X to itself is called a permutation.

AJD September 18, 2009
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A permutation of a finite set is an arrangement of the elements

of the set: list the elements of the set on one line and write their

images under the bijection on the next line:

1 2 3 4 5 6 7

3 4 7 5 1 2 6

In the problem above this gives us a pairing: girls are listed, in

order, on the top row, boys on the second. If we always list the

elements of the top line in the same order (increasing say) then the

list 3, 4, 7, 5, 1, 2, 6 from the bottom line uniquely determines the

permutation. Therefore pairings and permutations are the same

thing; and from now on we call them permutations. In this notation

the permutations of the set {a, b, c}, where the top row is always

AJD September 18, 2009
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written abc, are

abc, acb, bac, cab, cba, bca.

Theorem 1.8. The number of permutations of a set of n elements is n!.

1.4 Multisets

In the notation for permutations above each element of the set {1, . . . , n} appears

exactly once. By contrast suppose that I drink 5 cups of water, 3 cups of tea and 2 cups

of coffee every day. How many different ways can I arrange the order in which I drink all

these drinks, (assuming that there is no difference between two cups of the same kind of

drink)?

W - water

T - tea

C - coffee.

An ordering is a list like WWWWWTTTCC

Suppose first that all drinks very tasty, so each is different and to

be explicit suppose I have a drink at times 1 to 10. In this case

ordering the drinks amounts to pairing drinks and times; so there
AJD September 18, 2009
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are 10! permutations each giving a different order. Now suppose I

can’t taste water; so that I cannot tell the difference between the

cups of water any more. Given one of the 10! orders I can reorder

the 5 cups of water amongst themselves and this will not change

the order of my drinks. There are 5! permutations of the 5 cups of

water all of which leave the original order the same. Now suppose

I can’t taste the difference between the teas or coffees either. For

each of the 5! permutations of cups of water there are, similarly,

a further 3! permutations of teas and for each of these another 2!

permutations of coffees; leaving the same ordering. Hence there are

5!3!2! = 1640 ways of obtaining the ordering of tasteless drinks,

given the original permutation of tasty ones. This means that the

total number of orderings of drinks (with unlabelled cups) is

10!/5!3!2! = 10× 9 × 8 × 7× 6/3!2! = 2520
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orderings in which I can take my drinks.
A multiset is a collection of elements of a set in which elements may occur more than once.

{W, W, W, W, W, T, T, T, C, C} is a multiset. The corresponding

set is {W, T, C}.
Theorem 1.9. Let a1, . . . , ak be positive integers and let n = a1 + · · ·+ ak. If we have a
multiset of a1 elements of type 1, a2 elements of type 2, ... , ak elements of type k, then
we can arrange these elements in order in

n!
a1! · · ·ak!

ways.

We can prove this by using the argument for drinks, as above,

suitably generalised.

1.5 Sequences of length k

A database stores information of a certain type as a string of length 10 consisting of

capital letters A–Z, lower case letters a–z and numerical digits 0–9: so there are 62 different

symbols available. How many different records can be made this way?

There are 10 positions to fill. There are 62 choices for the first. No

matter what the first choice is there are 62 choices for the second,

and no matter what this is there are 62 for the third, and so on. The

total number of choices is then 6210, which is the number of possible
AJD September 18, 2009
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records. This is a general phenomenon, which we now record. In

this example the database stores sequences of length 10 of elements

of the given symbols, which we might call its alphabet.

Lemma 1.10. The number of sequences a1, . . . , ak of length k where all the elements ai

belong to a set of size n is nk.

Proof. There are n choices for each ai so nk in all.

Example 1.11. I am going to paint each of my fingernails (and thumbnails) a different
colour. I have paints of 5 different colours. How many different ways can I do this?

I’ll number my nails from 1 to 10 and call the colours a, b, c, d, e,

f . Any choice of colouring gives me a sequence of length 10 from

an alphabet of length 5, so there are 510 possibilities in all. I can

think of a choice of colouring as a map from {1, . . . , 10} to the set

of colours {a, b, c, d, e}: just map nail i to the colour it is painted.
AJD September 18, 2009
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Thus a sequence a, e, d, c, c, e, b, a, b, e say corresponds to a map:

1 2 3 4 5 6 7 8 9 10

a e d c c e b a b e

In fact we can start with a sequence and describe a map or vice-

versa. Thus the number of maps from {1, . . . , 10} to {a, b, c, d, e}

is 510. This is quite general, for maps of one finite set to another.

Corollary 1.12. The number of maps from a set of size k to a set of size n is nk.

Let X be set of size k and Y a set of size n and let f be a map from

X to Y . If X has elements x1, . . . , xk then the f(x1), . . . , f(xk) is

a sequence of length k of elements of Y . Conversely any sequence

y1, . . . , yk, with elements in Y determines a map sending xi to yi.

This shows that there is a bijection from the set of maps from X

to Y to the set of sequences of length k with elements in Y and the
AJD September 18, 2009
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result follows from the previous lemma.

1.6 Ordered subsets of size k

I’m going to place a bet at Cheltenham races on a race in which there are 15 horses.

Only the order of the first 3 horses over the line is recorded and I bet that horses Brave

Inca, Straw Bear and Lazy Champion will come in 1st, 2nd and 3rd, respectively. How

many outcomes are possible and how likely am I to win my bet?

The first place can be won by any of the 15 horses. Whichever wins

1st places there are 14 more horses all of which can win second

place, and then 13 for third place so there are 15× 14× 13 possible

outcomes. My first bet corresponds to exactly one of these so the

probability that I win, if all horses are equally likely to perform

well, is 1/15 · 14 · 13.

If the race had n horses and the first k over the line were recorded

then the number of possible outcomes can be calculated in exactly

the same way. There are n possibilities for 1st. Given each such

there are n − 1 for 2nd. Given each ordering of 1st and 2nd there
AJD September 18, 2009
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are then n− 2 possibilities for 3rd, and so on. Eventually there are

n · (n − 1) · · · (n − k + 1) possibilities for the the ordering of 1st,

2nd, ..., kth places.
A k-subset is a subset of k elements. A set of n elements as an n-set. Note that an ordered
subset is a sequence, but without repetition. A race outcome above is an ordered 3-set of
a 15-set.
Theorem 1.13. The number of ordered k-subsets of an n-set is

n(n− 1) · · · (n− k + 1) = n!
(n− k)! .

If k = n here we just get back to the number of permutations.

1.7 Subsets

Example 1.14. How many subsets does the set {a, b, c} have?

They are

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}

so there are 8 of them. That is 23. To form a subset first decide if a

is included or not: there are 2 choices. For each choice then decide

whether or not b is included: another 2 choices. Finally decide if c

is included or not.
AJD September 18, 2009
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Lemma 1.15. The number of subsets of a set of size n is 2n.

Proof. Suppose the set has elements a1, . . . , an. To form any subset

there are 2 choices for a1: included or not included. Given either

choice there are the same 2 choices for a2, then for a3 and so on.

Finally we have 2n choices, each of which gives rise to a different

subset.

1.8 k-subsets

In a game called “Quickfire Lotto” players buy a ticket and select 4 numbers from a

list of the numbers from 1 to 48. Then 4 different winning numbers between 1 and 48 are

selected at random. How many tickets would you need to buy to be sure of getting all 4

numbers (and so winning the top prize).

To find the number of possibilities for the winning numbers we can

first count the number of ordered 4-subsets of the set {1, . . . , 48},

as in Section 1.6. There are 48!/44! of these. However this means

that I shall count some choices more than once: because in the
AJD September 18, 2009



MAS2216 Notes 14

current situation the winning numbers are the same if they’re picked

as say 14, 7, 3, 35 or as 7, 35, 14, 3. Order does not matter here.

How many ways have I counted each subset of 4 numbers. The

number of ways to pick the four numbers 14, 7, 3, 35 is the same as

the number of arrangements (or permutations) of these numbers:

namely have 4!. Therefore I have counted each subset of 4 numbers

4! times. The number of outcomes from the selection of 4 numbers is

therefore 48!/44!4!. If I buy this many tickets I can select all possible

outcomes and be sure of winning. Note that 48!/44!4! = 194580 so

this will be tedious. Also, the top prize for getting all 4 numbers

is 12972 × p, where p is the ticket price. So to be sure of winning

£12972 I’d have to spend £194580.
By convention we set 0! = 1.

This is a sensible convention and works well in practice. For example

it makes the following definition work when n or k is zero.

AJD September 18, 2009
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Definition 1.16. The binomial coefficient for integers n ≥ k ≥ 0 is(
n

k

)
= n!

k!(n− k)! .

For integers n < k we define (
n

k

)
= 0.

In particular from this definition we have(
n

0

)
=
(

n

n

)
=
(

0
0

)
= 1 and

(
n

1

)
=
(

n

n− 1

)
= n.

Theorem 1.17. The number of k-subsets of a set of n elements is(
n

k

)
= n(n− 1) · · · (n− k + 1)

k! .

Proof. From Theorem 1.13 the number of ordered k-subsets is n!/(n−

k)! = n(n−1) · · · (n−k+1). Given any ordered k-subset a1, . . . , ak

every permutation of this k-subset gives rise to the same unordered

subset S = {a1, . . . , ak}; and we obtain this subset only as permu-

tations of the original ordered k-subset. There are k! permutations

of a k − subset Hence every k-subset has been counted k! times.

The number we require is therefore n!/(n− k)!k! =
(
n
k

)
.
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1.9 k-multisets

Example 1.18. It has been decided that classes for module MAS9999 will all be held on
a Friday between the hours of 8:00 and 20:00 (so there are 12 hour long slots available).
There are to be 5 hours of teaching but no two consecutive hours. In how many ways can
the schedule be devised?

We can’t just choose 5-subsets of start times from 8 to 19 because we

need to satisfy the constraint that no two classes run in consecutive

hours. Suppose the classes are held beginning at times t1 < t2 <

· · · < t5. These times must satisfy the constraints that ti+1 > ti+1,

so ti < ti+1 − 1 and altogether

8 ≤ t1 < t2 − 1 < t3 − 2 < t4 − 3 < t5 − 4 ≤ 15 (1.1)

as t5 ≤ 19. Now let s1 = t1, s2 = t2 − 1, s3 = t3 − 2, s4 = t4 − 3

and s5 = t5 − 4. Suppose we choose numbers t1, . . . , t5 satisfying

the conditions above. This gives us numbers s1, . . . , s5 such that

8 ≤ s1 < s2 < s3 < s4 < s5 ≤ 15. (1.2)
AJD September 18, 2009
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This is a 5-subset of {8, . . . , 15} (which we happen to have written

in order). Thus a choice of times gives us a 5-subset of a set of 8 el-

ements. On the other hand if we choose any 5-subset of {8, . . . , 15}

then we can write it in order as above: 8 ≤ s1 < s2 < s3 < s4 <

s5 ≤ 15 and now we obtain t1, . . . t5 satisfying (1.1). Thus the

number of possible choices of the ti is the same as the number of

5-subsets of {8, . . . , 15}: that is
(8

5
)

= 8 · 7 · 6/3 · 2 = 56.
A collection of k elements of a set where repetition is allowed is called a k-multiset.

Theorem 1.19. The number of k-multisets of a set of n elements is(
n + k − 1

k

)
.

1.10 The Binomial Theorem

We introduced the binomial coefficients in Definition 1.16 above. These numbers play
a central role in enumeration problems so we’ll look at them more closely now. Consider
expanding

(x + y)7 = (x + y)(x + y)(x + y)(x + y)(x + y)(x + y)(x + y).

What is the coefficient of say x3y4 in the result?

When expanding the brackets, at each stage we move across the

expression choosing either an x or a y from each bracket and mul-

tiplying the choices together. Then we add the resulting products.
AJD September 18, 2009
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We get the product x3y4 if we choose x from 3 brackets and y from

4. It doesn’t matter what order we make these choices in as long as

we always choose exactly 3 xs (which means we must choose 4 ys).

The number of different ways of choosing x from 3 brackets is
(7

3
)

and so we will obtain the product x3y4 this number of times. Thus

the coefficient of x3y4 in the expansion will be
(7

3
)
. In general we

have the following theorem.

Theorem 1.20 (The Binomial Theorem). For all positive integers n

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.

The proof is exactly the same as the argument for the expansion of

(x+y)7 above: except we calculate the coefficient of xkyn−k instead

of x3y4. Go through that argument replacing 7 by n, 3 by k and 4

by n− k and the result will follow.

Corollary 1.21.
n∑

k=0

(
n

k

)
= 2n
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and
n∑

k=0

(−1)k

(
n

k

)
= 0.

Proof. Using the binomial theorem set x = y = 1 for the first part

and x = −1 and y = 1 for the second.
It’s worth writing the statements of the corollary out in long hand, just to see what they
look like. We have (

n

0

)
+
(

n

1

)
+
(

n

2

)
+ · · ·+

(
n

n− 1

)
+
(

n

n

)
= 2n

and (
n

0

)
−
(

n

1

)
+
(

n

2

)
− · · ·+ (−1)n−1

(
n

n− 1

)
+ (−1)n

(
n

n

)
= 0.

Now here are some facts about binomial coefficients. We can prove all of these algebraically
or by using counting arguments.

Lemma 1.22. Let n and k be positive integers.

(i) (
n

k

)
=
(

n

n− k

)
.

(ii) (
n− 1

k

)
+
(

n− 1
k − 1

)
=
(

n

k

)
.

Proof. These are all easy to prove with a little algebraic manipula-

tion.
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The Multinomial Theorem

Suppose we wish to compute powers of (x+ y + z) instead of (x+ y). For example we have
(x + y + z)3 = x3 + y3 + z3 + 3x2y + 3x2z + 3xy2 + 3y2z + 3xz2 + 3yz2 + 6xyz.

What is the coefficient of xaybzc in (x + y + z)n?

First of all if a+b+c 6= n then we’ll get no such product. Therefore

we assume that a+b+c = n. In order to obtain the product xaybzc

we must pick an x from a brackets, a y from b brackets and a z

from c brackets. Whichever order we do this in we still arrive at the

product xaybzc. The number of ways we can do this is the same as

the number of ways to order the multiset consisting of a copies of

x, b copies of y and c copies of z. From Theorem 1.9 this is n!
a!b!c! .

Hence this is the coefficient of xaybzc.

Definition 1.23. Let n = a1 + · · ·+ ak, where ai is a non-negative integer, i = 1, . . . , k.
Define the multinomial coefficient(

n

a1, . . . , ak

)
= n!

a1! · · ·ak! .

Theorem 1.24. Let x1, . . . , xk be real numbers. Then, for all non-negative integers n and
positive integers k, we have

(x1 + · · ·+ xk)n =
∑

a1,...,ak

(
n

a1, . . . , ak

)
xa1

1 · · ·xak
k ,

where the sum is over all length k sequences a1, . . . , ak of non-negative integers such that
n = a1 + · · ·+ ak.
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1.11 Inclusion-Exclusion

I have 30 uncles some wicked some virtuous. 12 of them smoke, 12 of them drink and

18 of them gamble. 6 smoke and drink, 9 drink and gamble, 8 smoke and gamble and

finally 5 smoke, drink and gamble. How many neither smoke, drink nor gamble?

First let’s find the number of uncles who either smoke or drink

or gamble. Adding the numbers who have all three vices gives

12+12+18 = 42. However in adding these numbers I have counted

some people at least twice: those who have two vices. I should

therefore correct the count by subtracting the sum of numbers of

people with two vices. This gives 42 − (6 + 9 + 8) = 19. However

this is still not an accurate count. Those uncles with all 3 vices were

counted three times, as smokers, drinkers and gamblers, in the first

sum, but then subtracted three times in the second sum: so now

they don’t contribute to the count at-all. To get the right count I

have to add them back. This gives 19+5 = 24, which is the number

of uncles with at least on of these 3 vices. As there are 30 uncles in
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total there are 6 of them with none of these vices. Again, a Venn

diagram is useful.

The general result covering the examples above is the next theorem.

Theorem 1.25. Let A1, . . . , Ak be subsets of a set E. Then

|A1 ∪ · · · ∪ Ak| = |A1| + · · ·+ |Ak|
− (|A1 ∩A2|+ · · ·+ |Ak−1 ∩Ak|)
+ (|A1 ∩A2 ∩ A3| + · · ·+ |Ak−2 ∩ Ak−1 ∩Ak|)
...
+ (−1)k−1|A1 ∩ · · · ∩Ak|.

That is

|A1 ∪ · · · ∪Ak| =
k∑

i=1
(−1)i−1

∑
s1,...,si

|As1 ∩ · · · ∩ Asi
|

where, for all i, the subscripts s1, . . . , si run over all i-subsets of {1, . . . , k}.

Proof. To prove this consider x ∈ E. If x /∈ A1 ∪ · · · ∪ Ak then x
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does not occur in any of the intersections on the rhs of the expres-

sion in the theorem. Hence x is not counted on either side of this

expression. Suppose then that x ∈ A1 ∪ · · · ∪ Ak. We know x is

counted once in the lhs of the expression of the theorem. We want

to find how many times it’s counted on the right. Suppose that

x ∈ Ai if and only if i is one of t1, . . . , tr and set T = {t1, . . . , tr}.

Now x ∈ Ar1 ∩ · · · ∩ Arj
if and only if {r1, . . . , rj} ⊆ T . Hence

the number of times x is counted in

∑
s1,...,si

|As1 ∩ · · · ∩ Asi
|

is equal to the number of i-subsets of T : that is
(
r
i

)
. Thus the

number of times x is counted is

r in |A1| + · · · + |Ak|(
r
2
)

in |A1 ∩A2| + · · · + |Ak−1 ∩Ak|
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r
3
)

in |A1 ∩A2 ∩A3| + · · · + |Ak−2 ∩ Ak−1 ∩ Ak|

.

.

.(
r
r

)
in |A1 ∩ · · · ∩Ar| + · · · + |Ak−r+1 ∩ · · · ∩ Ak|

and 0 in all intersections of more than r subsets. Hence the contri-

bution of x to the right hand side of the expression in the theorem

is

r −
(

r

2

)
+
(

r

3

)
− · · · + (−1)r−1

(
r

r

)
=

r∑
i=1

(−1)i−1
(

r

i

)

Now

r∑
i=1

(−1)i−1
(

r

i

)
= 1 − 1 +

r∑
i=1

(−1)i−1
(

r

i

)
= 1−

(
r∑

i=0
(−1)i

(
r

i

))
= 1,

using Corollary 1.21. Thus x contributes exactly one to the rhs, as
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required.

1.12 Derangements

Example 1.26. n people come to a party at your house, each wearing a hat. When they
leave they are not so sober and they can’t remember which hat is which. In the morning
each person discovers they have someone else’s hat. How many ways can this happen?

A redistribution of hats is a permutation of hats. For example, if

n = 10, permutation 3, 9, 2, 1, 7, 10, 5, 4, 6, 8 means person 1 has

hat 3, person 2 has hat 9 etc. Thus the problem is to find how

many permutations there are which fix no point: because if the

permutation fixes say 3 then person 3 ends up with hat 3, his own.

We’ll solve the problem by first finding the number of permutations

of {1, . . . , n} which have at least one fixed point. (All the others

then have no fixed points.) Define Fi to be the set of permutations

fixing i. Then F1 ∪ · · · ∪ Fn is the set of permutations fixing at

least one point. We wish to compute |F1 ∪ · · · ∪ Fn|. First let’s

count the number of permutations which fix 1. These correspond
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to permutations of the set {2, . . . , n}, as all these integers may be

freely permuted amongst one another, so there are (n−1)! of them.

There is nothing special about 1: the same argument works for all

i between 1 and n. Thus Fi = (n− 1)!, for i = 1, . . . , n. Hence

|F1| + · · · + |Fn| = n× (n− 1)! = n!.

From Theorem 1.25 it is clear we need to calculate the size of in-

tersections of the Fi. Now Fi ∩ Fj is the set of permutations fixing

both i and j. Once i and j are fixed the remaining n− 2 elements

of the set may be permuted in any way. There are (n − 2)! such

permutations and so |Fi∩Fj| = (n− 2)!. There are
(
n
2
)

choices for

the 2-subset {i, j}. Hence

|F1 ∩ F2| + · · · + |Fn−1 ∩ Fn| = (n− 2)!
(

n

2

)
= (n− 2)!n!

2!(n− 2)! = n!
2! .
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Similarly, taking intersections of r of the Fi we have permutations

fixing r points and

∑
s1,...,sr

|Fs1 ∩ · · · ∩ Fsr| = (n− r)!
(

n

r

)
= (n− r)!n!

r!(n− r)! = n!
r! .

From Theorem 1.25 we have then

|F1∪ · · · ∪Fn| =
n∑

r=1
(−1)r−1n!

r! = n!− n!
2! + n!

3! − · · ·+ (−1)n−1n!
n!.

This is the number of permutations with at least one fixed point.

The number of permutations with no fixed point is therefore n!

minus this number. That is

n∑
r=0

(−1)rn!
r!

A permutation with no fixed points is called a derangement of a set and the number of
such permutations of an n-set is denoted D(n).

Theorem 1.27. The number of derangements of an n-set is

D(n) =
n∑

r=0
(−1)r n!

r! .
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The argument of the previous example proves the theorem.

If n = 5 in the example above then D(5) = 44. As there are

a total of 5! permutations the probability, if everyone chooses a

hat uniformly at random, of noone having the right hat is 44/5! =

44/120 = 11/30. That is a little over a 1/3 of the time everyone

chooses the wrong hat.

1.13 Compositions

Suppose I wish to distribute n toffees to k students. How many ways is it possible to

do this, assuming that all the toffees are identical but that no two students are identical?

I assume all toffees are identical, but all students are different from

each other. Number students 1, . . . , k. Then line up the toffees on

the desk. Then I find k−1 of the little barriers used at supermarket

chequouts and place the first one after the number of toffees I’m

going to give to the first student, the second after the number I’m

going to give to the second, etc. I have k − 1 barriers so this sorts
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the line of toffees into k parts. I can put some barriers together, in

which case the corresponding student gets no toffees. If there are

12 toffees and 5 students here are two possibilities.

Counting students and barriers I have a total of n+k−1 objects and

any such assigment is an ordering of this multiset of n toffees and

k − 1 barriers. Conversely any ordering of a multiset of n objects

of type 1 and k − 1 objects of type 2 can be used to determine a
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distribution of toffees. Hence the number of possibilities is

(n + k − 1)!
n!(k − 1)! =

(
n + k − 1

n

)
=
(

n + k − 1
k − 1

)
.

If there are 24 toffees and 15 students the number of possibilities is(38
24
)

= 9669554100.
Now suppose that I feel bad about the possibility that some students may not get any

toffees atall. How many ways are there of distributing n toffees amongst k students so that

every student gets at least one toffee.

I can achieve any distribution of this form by first giving everyone

a single toffee and then choosing any distribution of the remaining

n − k toffees amongst the k students: that is distributing n − k

toffees to k students in the same way as I originally distributed n

toffees to k students. There are therefore

(
(n− k) + k − 1

k − 1

)
=
(

n− 1
k − 1

)

ways of achieving this distribution. (The top line is (n− k) +k− 1
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and the bottom line is as before.)
More formally we make the following definition.

Definition 1.28. A sequence (a1, . . . , ak) of k non-negative integers such that
∑k

i=1 ai = n
is called a weak composition of n into k parts. If ai > 0 for all i the sequence is called a
composition.

Theorem 1.29. The number of weak compositions of n into k parts is(
n + k − 1

n

)
=
(

n + k − 1
k − 1

)
.

Proof. We can think of the integers 1, . . . , n as a line of toffees and

the integer k as number of students. Arrange the toffees as above

and then insert the k − 1 barriers, and the result follows.

Corollary 1.30. The number of compositions of n into k parts is(
n− 1
k − 1

)
.

Proof. Exactly the same argument as used for students and toffees

proves the corollary.
Since ai can be zero in a weak composition there exist weak compositions of n into k parts
for all k > 0. However, for a composition of n into k parts to exist we must have k ≤ n.
Therefore there are finitely many compositions of n: and we have the following Corollary.

Corollary 1.31. The number of compositions of n is 2n−1.
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Proof. From Corollary 1.30 the number of compositions of n into

k parts is
(
n−1
k−1
)
. Summing over k = 1 to n the total number of

compositions is

n∑
k=1

(
n− 1
k − 1

)
=

n−1∑
k=0

(
n− 1

k

)
= 2n−1,

using Corollary 1.21.

1.14 Partitions

Suppose now I have n flowers, each one of a different kind. I wish to arrange them in

k identical vases, in such a way that there’s at least one flower in each vase. In how many

ways can I distribute the flowers among the vases?

All the n flowers are different, so constitute a set of size n. A

distribution into k vases amounts to a choice of k non-empty subsets

of the elements of this set. Obviously no flower is put into 2 vases

and every flower goes into some vase. What I’m asking is how many

ways I can partition a set of n elements into k non-empty subsets,
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the intersection of any two of which is empty.

Definition 1.32. A partition of a set X into k parts is a collection S1, . . . , Sk of non-empty
subsets of X such that X = ∪k

i=1Si and Si ∩ Sj = ∅, whenever i 6= j.

Example 1.33. List all the partitions of the set {1, 2, 3, 4} into 2 non-empty subsets.

We start with the case where one of the subsets has exactly one

element, which means the other has 3. In this case we have

{1} and {2, 3, 4};

{2} and {1, 3, 4};

{3} and {1, 2, 4};

{4} and {1, 2, 3}.

Now consider the case where one subset has 2 elements, so the other

does as well.

{1, 2} and {3, 4};

{1, 3} and {2, 4};

{1, 4} and {2, 3}.

All 6 2-subsets of {1, 2, 3, 4} now appear in our list, so this is all
AJD September 18, 2009



MAS2216 Notes 34

partitions of this kind. Hence there are 7 partitions of {1, 2, 3, 4}

into 2 parts.

Definition 1.34. The number of partitions of {1, . . . , n} into k parts is denoted S(n, k).
The numbers S(n, k) are called the Stirling numbers (of the second kind).

From the example above we have S(4, 2) = 7.

Example 1.35. Find S(3, 1) and S(3, 2).

We have seen S(4, 2) = 7 above. S(3, 1) is easy: there is only one

partition of 3 into one part, namely {1, 2, 3}. The partitions of 3

into 2 parts are {1} and {2, 3}

{2} and {1, 3}

{3} and {1, 2}.

Therefore S(3, 1) = 1 and S(3, 2) = 3. We can compute S(4, 2)

using our knowledge of S(3, 1) and S(3, 2). In any partition of 4

into 2 parts either 4 occurs in a singleton set, and the remaining set

is {1, 2, 3}; or 4 occurs in a subset containing either 1, 2 or 3: and

removing 4 from such a subset leaves a partition of {1, 2, 3}, and
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we know these already. From the above we obtain, by adding 4 to

the left hand set of a decomposition of 3 into 2 parts and then into

the right hand side of the same partition

{1, 4} and {2, 3}

{2, 4} and {1, 3}

{3, 4} and {1, 2} and

{1} and {2, 3, 4}

{2} and {1, 3, 4}

{3} and {1, 2, 4}.

Together with the partition {4} and {1, 2, 3} we have 7 partitions

so S(4, 2) = 7 again. We can generalise this method to give a

recursive formula for the Stirling numbers.

Lemma 1.36. Let 1 ≤ k ≤ n. Then

S(n, n) = 1 and S(n, 1) = 1,

S(n, n− 1) =
(

n

2

)
and

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).
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Proof. There is only one way to partition n into n parts: with every

element in a singleton set. There is only one partition of n into one

part: namely {1, . . . , n}. Thus S(n, n) = 1 and S(n, 1) = 1.

Any partition of n into n− 1 subsets must involve one set of size

2 and n− 2 sets of size 1. Therefore the number of such partitions

is the same as the number of subsets of size 2. The third statement

of the Lemma now follows since there are
(
n
2
)

of these.

For the last statement, fix the element n of our set of n elements.

Given a partition of n into k parts there are two possibilities. Either

n occurs by itself as one of the subsets of the partition or n occurs in

a subset along with some other element. First we count the number

of ways the first possibility can arise. If we remove the subset {n}

from the partition then we have a partition of n−1 into k−1 parts

left. There are S(n−1, k−1) such partitions, so this is the number
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of ways the first possibility can arise.

Now consider the second case. Removing n from the subset in

which it occurs we are left with an non-empty subset, so this time we

have a partition of n− 1 into k parts. Conversely given a partition

of n− 1 into k parts we can add n into any one of the k subsets to

obtain a partition of n into k parts. Therefore the second possibility

arises in kS(n− 1, k) ways and the result follows.

Now suppose that I have again n flowers, no two the same, and I wish to distribute

them amongst k people, who are all different from each other, so that everyone receives at

least one flower. How many ways can this be done? That is, how many ways are there of

distributing n different kinds of flower amongst k people, so that each person receives at

least one flower?

I have S(n, k) ways of arranging flowers in the k vases: which

I number as vases 1, . . . , k. Now I want to distribute these to

persons 1, . . . , k. Each distribution corresponds to a permutation

of {1, . . . , k} so there are k! possible distributions. This is the case
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for each arrangement into k vases so there are altogether k!S(n, k)

ways of distributing the flowers in vases.

In fact given a distribution scheme I have a uniquely determined

surjective function from the set of flowers to the set of people. Con-

versely, such a surjective function f determines a unique way of

distributing the flowers: give flower i to person f(i).

The argument of this example generalises to give the following

theorem.

Theorem 1.37. The number of surjective functions from a set of size n to a set of size k
is k!S(n, k).

Proof. Identify the set of size n with {1, . . . , n} and the set of size

k with {1, . . . , k}. A function f from {1, . . . , n} to {1, . . . , k}

determines subsets S1, . . . , Sk of {1, . . . , n}, where Si = f−1(i),

for i = 1, . . . , k; so Si ∩ Sj = ∅, if i 6= j. As f is surjection no

Si is empty and so these subsets form a partition of {1, . . . , n}.
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Conversely every partition of {1, . . . , n} into k parts determines k!

surjective functions from {1, . . . , n} to {1, . . . , k} as follows. Given

such a partition T1, . . . , Tk choose a permutation σ of {1, . . . , k}.

Define a surjective map f by setting f−1(i) = Tσ(i), for all i.

No two permutations σ and σ′ give the same map (why?) and

since there are k! permutations there are k! such maps altogether.

Notice that if we construct the partition S1, . . . , Sk corresponding

to any one of these functions then it is (after reordering if neces-

sary) T1, . . . , Tk. This means that if we choose a different partition

T ′
1, . . . , T

′
kof {1, . . . , n} then it cannot give rise to any of the maps

we found before, and now the result follows.

We can now apply the inclusion-exclusion principle to obtain a formula for S(n, k). The
formula is not entirely satisfactory as it contains a sum of k + 1 terms, but it is the best
we can do.

Theorem 1.38. Let k and n be positive numbers. Then

S(n, k) = 1
k!

k∑
d=0

(−1)d

(
k

d

)
(k − d)n =

k∑
d=0

(−1)d 1
d!(k − d)!(k − d)n.
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Proof. From Theorem 1.37 the number of surjective maps from

{1, . . . , n} to {1, . . . , k} is k!S(n, k): so we count these surjective

maps. Recall from Lemma 1.12 that the number of all maps from

{1, . . . , n} to {1, . . . , k} is kn. We wish to count all those that

do not miss out any element of the codomain. First we’ll count

maps that do miss some element. To this end let Mi denote the

set of maps from {1, . . . , n} to {1, . . . , k} which do not have i in

their image. There are (k − 1)n of these. Now a map belongs to

Mi1 ∩ Mi2 ∩ · · · ∩ Mid if and only if the integers i1, i2, . . . , id are

not in its image. These are then maps from {1, . . . , n} to a set

of size k − d, and so there are (k − d)n of them. Thus the maps

which are not surjective are M1 ∪ . . . ∪Mk and we have, from the
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inclusion-exclusion principle that

|M1 ∪ . . . ∪Mk| =
k∑

d=1
(−1)d−1

∑
i1,...,id

|Mi1 ∩ · · · ∩Mid|

=
k∑

d=1
(−1)d−1

(
k

d

)
(k − d)n,

since there are
(
k
d

)
subsets of {1, . . . , k} of size d. Subtracting this

from kn =
(
k
k

)
(k−0)n we see that the number of surjective functions

is

k!S(n, k) =
k∑

d=0
(−1)d

(
k

d

)
(k − d)n

so

S(n, k) = 1
k!

k∑
d=0

(−1)d
(

k

d

)
(k − d)n

and the second equality follows from definition of binomial coeffi-

cients.
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1.15 Integer Partitions

I have a bag of n identical marbles and wish to sort them into k non-empty piles, the

order of which does not matter. How many ways can I do this?

Suppose I sort the marbles into piles of size a1, . . . , ak. I can assume

that the sizes of piles are recorded in decreasing order, as I am

not distinguishing between two different pilings if only the order of

piles changes. Thus I have integers a1 ≥ · · · ≥ ak ≥ 1 such that

a1 + · · · + ak = n. For example if n = 10 and k = 4 the options

are piles of size

7, 1, 1, 1

6, 2, 1, 1

5, 3, 1, 1

5, 2, 2, 1

4, 4, 1, 1

4, 3, 2, 1
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4, 2, 2, 2

3, 3, 3, 1

3, 3, 2, 2.

Definition 1.39. Let a1 ≥ · · · ≥ ak ≥ 1 be integers such that a1 + · · · + ak = n. Then
(a, . . . , ak) is called an integer-partition of n into k parts. The number of integer-partitions
of n into k parts is denoted pk(n) and the number of all integer-partitions of n is denoted
p(n).

Obviously p(n) =
∑n

k=1 pk(n). We have p4(10) = 9, from the

above.
It can be shown that

p(n) ∼ 1
4
√

3
exp(π

√
2n

3 )

The growth of p(n) is faster than polynomial but slower than an

exponential function cn.

c.f. Number of permutations of {1, . . . , n} = n! and n! ∼
√

2πn(n/e)n.
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1.16 Summary

We summarise the counting results found in the following tables.

Permutations

permutations of an n-set n!

orderings of ai objects of type i, where
a1 + · · ·+ ak = n

n!
a1! · · ·ak!

Sequences

sequences of length k over an alphabet of size n
or functions from a set of size k to a set of size n

nk

ordered k-subsets of an n-set n!
(n− k)!

Subsets

all subsets of an n-set 2n

k-subsets of an n-set
(

n

k

)

k-multisets of an n-set
(

n + k − 1
k

)
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Derangements

derangements of an n-set D(n) =
n∑

r=0
(−1)r n!

r!

Compositions

weak compositions of n into k parts
(

n + k − 1
k − 1

)

compositions of n into k parts
(

n− 1
k − 1

)

compositions of n 2n−1

Partitions

partitions of an n-set into k parts S(n, k) = 1
k!

k∑
d=0

(−1)d

(
k

d

)
(k − d)n

surjective functions of an n-set to a k-set k!S(n, k)

integer-partitions of an n-set into k parts pk(n) =??

integer-partitions of an n-set p(n) ∼ 1
4
√

3
exp(π

√
2n

3 )
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2 Graph Theory

2.1 Definitions

Example 2.1. 1. On arrival at a party guests shake hands with some of the people
they meet in the hallway, but mostly don’t shake hands after that. If we ask each
person how many people they shook hands with and then add these numbers we
always have an even number. Why?

2. Suppose there are an odd number of people at this party. If we ask each person how
many other people they shook hands with then there will be an odd number of people
who answer with an even number. Why?

3. Only 6 people make it to the MAS2216 lecture at mid-day on the day after this party.
I can guarantee that either 3 of them shook each others hands or 3 of them did not.
How can I be sure?

Definition 2.2. A graph G consists of

(i) a non-empty set V (G) of vertices and

(ii) a set E(G) of edges

such that every edge e ∈ E(G) is a multiset {a, b} of two vertices a, b ∈ V (G).

We shall restrict attention to graphs with finite edge and vertex sets in this course.
Throughout the remainder of the notes G = (V, E) will denote a graph with (finite) vertex
and edge sets V and E.

Example 2.3.
A

B

C

D

e1

e2 e3

e4

e5

e6
e7

e8

e9

A graph must have at least one vertex but need not have any edges.

Definition 2.4. Let G = (V, E) be a graph.

(i) Vertices a and b are adjacent if there exists an edge e ∈ E with e = {a, b}.
(ii) Edges e and f are adjacent if there exists a vertex v ∈ V with e = {v, a} and

f = {v, b}, for some a, b ∈ V .
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(iii) If e ∈ E and e = {c, d} then e is said to be incident to c and to d and to join c and
d.

(iv) If a and b are vertices joined by edges e1, . . . ek, where k > 1, then e1, . . . ek are called
multiple edges.

(v) An edge of the form {a, a} is called a loop.

(vi) A graph which has no multiple edges and no loops is called a simple graph.

In the graph of the above diagram A is adjacent to B; e1 is adjacent

to e4; e1 is incident to A and B and joins A and B; e6 and e7 are

multiple edges and e9 is a loop.The following diagram represents a

simple graph.

fig/simple.eps

A graph consists only of the sets V and E, so may be represented

by many different diagrams.

Example 2.5. Are these three graphs the same?
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(a) (b) (c)

Example 2.6. What about these three?

(a) (b)
(c)

All three graphs have a unique vertex u which is joined to 8 other

vertices (the top one) and a unique vertex v joined to 4 other vertices

(the bottom one): so if they’re the same these vertices must match

up. In graph (a) all the vertices to which u is joined are incident to
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exactly one more vertex. This is not the case for either (b) or (c).

A similar argument involving v shows (b) and (c) are different. We

make this formal with the following definition.

Definition 2.7. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there
exists a bijection φ : V1 −→ V2 such that the number of edges joining u and v in G1 is the
same as the number of edges joining φ(u) and φ(v) in G2, for all vertices u, v ∈ V1. In this
case φ is called an isomorphism from G1 to G2 and we write G1 ∼= G2.

The graphs of Example 2.5 are all isomorphic. No two graphs in

Example 2.6 are isomorphic.

Definition 2.8. The degree of a vertex u is the number of ends of edges incident to u
and is denoted deg(u) or degree(u).

fig/loops.eps

Loops count twice: deg(u) = 5, deg(v) = 3.

Definition 2.9. Let G be a graph with n vertices. Order the vertices v1, . . . , vn so that
deg(vi) ≤ deg(vi+1). Then G has degree sequence

〈deg(v1), . . . , deg(vn)〉.
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It follows from the definition of isomorphism that isomorphic graphs

have the same degree sequence. All the graphs of Example 2.5 are

isomorphic – so all have the same degree sequence, 〈3, 3, 3, 3, 3, 3, 3, 3〉.

However, the graphs of Example 2.6 all have degree sequence

〈2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 8〉 although no two are isomorphic.

From this example we see that two graphs may have the same degree

sequence and not be isomorphic.

Definition 2.10. A graph is regular if every vertex has degree d, for some fixed d ∈ Z.
In this case we say the graph is regular of degree d.

Example 2.11. Graphs which are simple, have 8 vertices, 12 edges and are regular of
degree 3. Are any two of these isomorphic? What are their degree sequences?

b

(a) (b) (c)
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v2

(d) (e) (f)

(h)

j

2.2 Counting degrees

For this subsection G is a graph with vertices V and edges E, that is G = (V, E).

Lemma 2.12 (The Handshaking Lemma).∑
v∈V

deg(v) = 2|E|.

Proof. Every edge has two ends each of which is incident to exactly

one vertex. For each vertex v the degree equals the number of ends

of edges incident at v. If we sum these degrees up we shall count each

end of each edge exactly once: and so each edge contributes two to
AJD September 18, 2009



MAS2216 Notes 52

the count. This is true even for edges which are loops, because they

contribute 2 to the degree of their incident vertex. Thus, summing

the degrees of vertices we obtain the left hand side of the equality

above and now we see that this is also twice the number of edges

as claimed.

Note that this shows why we always get an even number if we

add up the number of handshakes at a party. We form a graph

with vertices the people at the party and join two people if they

shake hands. Then the answer to the question “how many people’s

hands did you shake?” is the degree of your vertex. Summing these

degrees/ handshakes we get twice the number of edges of the graph

– an even number.

Lemma 2.13. Suppose that G is a graph with q vertices of odd degree. Then q is even.

Proof. Partition the vertex set V of G into two parts, V0 the set
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of vertices of even degree and V1 the set of vertices of odd degree.

From Lemma 2.12 we have

∑
v∈V

deg(v) =
∑
v∈V0

deg(v) +
∑
v∈V1

deg(v) = 2|E|.

Since deg(v) is even for all v ∈ V0 the number
∑

v∈V0
deg(v) is even,

call it d1. Now we have
∑

v∈V1
deg(v) = 2|E| − d1 which is even.

For all v ∈ V1 we have deg(v) odd so the latter sum is a sum of

odd numbers. A sum of n odd numbers is odd if n is odd and even

if n is even. Therefore the number of vertices in V1 must be even,

as required.

This gives us an answer to the second example at the beginning

of the section. In the graph we made for the people shaking hands

at the party above there are now an odd number of vertices/people.

The number q of people who shook hands with an odd number of
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people is the same as the number of vertices of odd degree, so this

is and even number. Therefore the number of people who shook

hands with an even number of people, which is the same as the

number of vertices of even degree, is odd.

Corollary 2.14. If G has n vertices and is regular of degree d then G has nd/2 edges.

Proof. By definition every vertex v of G has deg(v) = d, so
∑

v∈V deg(v) =

nd. From the Handshaking Lemma we have
∑

v∈V deg(v) = 2|E|

(V is the set of vertices, E the set of edges) so nd = 2|E|, and the

result follows.

2.3 Some examples

Example 2.15. The Null graph Nd, for d ≥ 1.

Nd is the graph with d vertices and no edges.

fig/null-3.eps
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Example 2.16. The Complete graph Kd, for d ≥ 1.

Kd is the simple graph with d vertices and every vertex joined to

all other vertices.

fig/complete-3.eps

K10 K15
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K20

K25

AJD September 18, 2009



MAS2216 Notes 57

K42
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Lemma 2.17. The complete graph Kd is regular of degree d− 1 and has d(d− 1)/2 edges.

Proof. Fix a vertex v. There are d−1 other vertices all of which are

joined to v. Since Kd is simple it is regular of degree d − 1. From

Corollary 2.14 it therefore has d(d− 1)/2 edges, as required.

Example 2.18. The Petersen graph.

This graph is regular of degree 3. It has n = 10 vertices, degree 3

and 10× 3/2 = 15 edges.
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2.4 Subgraphs

Take a blue graph and paint some of its vertices red. Now paint

some edges red, but make sure that whenever you paint an edge

you paint the vertices its incident to as well. Then the red vertices

and edges form a graph. Moreover this graph can be extended to

the whole of the original graph: just paint it all red. This is the

idea of a subgraph.

fig/subgraph.eps

Definition 2.19. A subgraph of a graph G = (V, E) is a graph H = (V ′, E ′) such that
V ′ ⊂ V and E ′ ⊂ E.

Example 2.20. 1. For d ≥ 1 we define the cycle graph Cd to be the graph with d
vertices v1, . . . , vd and d edges {v1, v2}, . . . , {vd−1, vd}, {vd, v1}. (C1 has one vertex v1
and one edge {v1, v1}.) The cycle graph is regular of degree 2 and simple if d ≥ 3.
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v1

C1

v1 v2

C2

v1

v2

v3 v4

v5

v6

C6

2. The star graphs are the graphs K1,s, s ≥ 1:

K1,2

K1,3
K1,6

3. For d ≥ 1 we define the wheel graph Wd to be the graph with d + 1 vertices

c, v1, . . . , vd and 2d edges {v1, v2}, . . . , {vd−1, vd}, {vd, v1}, {c, v1}, . . . {c, vd}.

cv1

W1

cv1 v2

W2

c

v1

v2

v3 v4

v5

v6

W6
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The wheel graph has a subgraph isomorphic to the cycle graph

Cd and a subgraph isomorphic to the star graph K1,d. For

d ≥ 3 it is simple.

2.5 Walks, paths and connectedness

Definition 2.21. A sequence

v0, e1, v1, . . . , vn−1, en, vn,

where

(i) n ≥ 0 and

(ii) vi ∈ V and ei ∈ E and

(iii) ei = {vi−1, vi}, for i = 1, . . . , n,

is called a walk of length n. The walk is from its initial vertex v0 and to its terminal
vertex vn.

Example 2.22.

u

v w

x

e1

e2

e3

e4

e5

e6

e7 e8

e9

1. The sequence u, e1, v, e7, v, e2, w, e2, v is a walk of length 4 from

u to v.
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2. The sequence w, e4, v is not a walk as e4 6= {w, v}.

Walks in simple graphs

If G is a simple graph then, to simplify notation, we may describe a walk by writing only
the subsequence of vertices, which we call the vertex sequence of the walk. For example
the sequence

v1, c, v5, v4, c, v2

is the vertex sequence of a unique walk in the wheel graph W6 shown above.

Open and closed walks and paths

Definition 2.23. Let W = v0, e1, v1, . . . , en, vn be a walk in a graph.

(i) If v0 = vn then W is a closed walk. A walk which is not closed (v0 6= vn) is called
open.

(ii) If vi 6= vj when i 6= j, with the possible exception of v0 = vn, then W is called a
path. (If v0 6= vn the path is said to be open and if v0 = vn it is closed.)

fig/walk.eps

Closed walk: a, b, c, b, a.

Open path: a, b, c, d, e.

Closed path: a, b, c, e, a.
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Connected graphs

Definition 2.24. A graph is connected if, for any two vertices a and b there is an path
from a to b. A graph which is not connected is called disconnected.

Lemma 2.25. Let a and b be vertices of a graph. There is a path from a to b if and only
if there is a walk from a to b.

Proof. If there is a path from a to b then it is a walk. On the other

hand suppose that there is a walk from a to b. If this is not a path
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then let vi be the first vertex of the walk which is repeated: so

vi = vj, for some j > i but all vertices v0, . . . , vi are different from

each other. Cut out all the edges and vertices of the walk between

vi and vj. This still leaves a walk from a to b but it has fewer edges

than the original. We can continue to decrease the number of edges

of the walk as long as it is not a path. Clearly this process must

come to an end at some point and then we’ll have a path from a to

b.

Definition 2.26. A connected component of a graph G is a subgraph H of G such that

1. H is a connected subgraph of G and
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2. H is not contained in any larger connected subgraph of G.

A connected graph has only one connected component – itself.

The graph G on the left has 3 connected components A, B and C, as shown.

ei+1

G A

B
C

2.6 Eulerian graphs

The Königsberg bridge problem

R. Pregel

1 2 3

4

567
A

B

C

D

The River Pregel in Königsberg

The Königsberg bridge problem is to find a way of walking around

the town crossing all bridges exactly once. Some versions of the
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problem insist that the walker starts and finishes at the same place.

Euler proved, using graph theory, that there is no way of doing so.

Euler replaced the map of the town with a graph: each land mass

has a vertex in its middle and two land masses are connected by

an edge wherever there is a bridge between them. This gives the

following graph.

1 2 3

4

5
67

A

B

C

D

A graph of the Königsberg bridges

Euler showed that in this graph there is no walk which contains ev-

ery edge exactly once: thus proving the Königsberg bridges problem

to be impossible. We need names for such walks.

Definition 2.27. A walk in which no edges are repeated is called a trail. A closed walk
which is a trail is called a circuit.
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Definition 2.28. 1. A trail containing every edge of a graph is called an Eulerian
trail.

2. A circuit containing every edge of a graph is called an Eulerian circuit.

3. A graph is called semi-Eulerian if it is connected and has an Eulerian trail.

4. A graph is called Eulerian if it is connected and has an Eulerian circuit.

Note: Every Eulerian graph is semi-Eulerian.

Example 2.29. 1. The walk 1, 2, 3, 1, 5, 4, 3, 5, 2 is a semi-Eulerian trail in the graph
G1 below. Therefore G1 is semi-Eulerian. Does G1 have an Eulerian circuit?

1

2 3

4

5

G1

2. The walk a, b, c, d, e, f, b, e, c, f, a is an Eulerian circuit in the graph G2 below.
Therefore G2 is Eulerian.

a

b c

d

ef

G2
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3. The walk a, 1, b, 2, c, 3, d, 4, e, 5, a, 7, c, 9, c, 8, e, 6, a is an Eulerian circuit in the graph
G3 below.

G3

1

2 3

4

5

6

7 8

9

a

b

c

d

e

Consider the vertex c in Example 2.29.3. Each occurrence of c

appears between two edges. As all edges of the graph appear in

the Eulerian circuit we can compute the degree of c as twice the

number of times it occurs in the sequence.

Theorem 2.30 (Euler, 1736). If G is an Eulerian graph then every vertex of G has even
degree.

Proof. Suppose that G is Eulerian and has an Eulerian circuit C,

say v0, e1, v1, . . . , en, vn. Then every edge of G occurs exactly once

in C and so if v is a vertex of G then every edge incident to v
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must occur exactly once in C. Therefore if v occurs k times in

the sequence v0, . . . , vn−1 then C is . . . , ei1, v, e′i1, . . . . . . , eik , v, e′ik,

so the degree of v is be 2k. This means every vertex has even

degree.

Example 2.31. 1. There is no Eulerian circuit for the graph of Example 2.29.1 above:
this graph has vertices of odd degree.

2. The graph of the Königsberg bridge problem has vertices of odd degree so is not
Eulerian.

3. The graph Kd is not Eulerian if d is even. (Why not?)

Lemma 2.32. Let G be a graph such that every vertex of G has even degree. If v ∈ V (G)
with deg(v) > 0 then v lies in a circuit of positive length.

Note. In this lemma G is not necessarily connected.

Proof. Starting at v we can begin a trail by walking along an edge

incident to v. There is one as v has positive degree. We continue

to construct a trail for as long as we can. At any vertex u 6= v we

come to we can always leave by an edge that has not been used so

far. In fact if we have previously visited u on k occasions then we

have used 2k ends of edges incident to u. Thus we arrive at u on
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the 2k + 1st edge. As deg(u) is even there must be another unused

edge by which we can leave. As G is finite we eventually arrive back

at v and form a circuit containing v, of positive length.

Theorem 2.33. Let G be a connected graph. Then G is Eulerian if and only if every
vertex of G has even degree.

Proof. We have already seen (Theorem 2.30) that if G is Eulerian

then every vertex of G is of even degree.

Suppose then that every vertex of G has even degree. Let C be a

circuit of maximal length in G. If C contains every edge of G then

it’s an Eulerian circuit and so G is Eulerian as required. We assume

that C does not contain all edges of G and derive a contradiction.

Assume that EC is the set of edges of C and that there are some

edges of G not in EC . Consider the graph G − EC . First of all,
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every vertex of G − EC has even degree (as C is a circuit). Also,

although G−EC may be a disconnected graph it does have an edge,

e say, and e lies in a connected component, H say, with at least

one edge. Furthermore, as G is connected it follows that C and H

have a vertex, a say, in common. (Walk along edges of H till C is

reached for the first time.) Now, as a vertex of the subgraph H, a

has positive degree and so, by Lemma 2.32, is contained in a circuit

D, of positive length, in H.

Let C be

v0, e
′
1, . . . , e

′
i, a, e′i+1, . . . , vm, v0 = vm

and let D be

u0, e1, . . . , ej, a, ej+1, . . . , un, u0 = un.
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Then

v0, e
′
1, . . . , e

′
i, a, ej+1, . . . , un = u0, e1, . . . , ej, a, e′i+1, . . . , vm

is a circuit in G of length greater than that of C (see Figure 2.1).

However this contradicts the choice of C as a circuit of maximal

length in G. Therefore C must contain all edges of G as required.

C

D

a

5

ej
ej+1

e′i+1

e′i

v0 = vm

u0 = un

C

D

aej
ej+1

e′i+1

e′i

v0 = vm

u0 = un

Figure 2.1: Construction of a circuit in Theorem 2.33

Example 2.34.
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1. The graph Kd is Eulerian, for d odd.

2. The graphs shown below are Eulerian.

Theorem 2.35. A connected graph is semi-Eulerian but not Eulerian if and only if pre-
cisely 2 of its vertices have odd degree.

Proof. Suppose that G has exactly 2 vertices, u and v of odd de-

gree. Form a new graph G′ by adding a new edge e joining u to

v. Now every vertex of G′ has even degree, so its Eulerian. Given

an Eulerian circuit for G we can move its starting point till its last

edge is e, from v to u. The circuit will then be u, e1, . . . , en, v, e, u.
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The only part of this not in G is e, so deleting e leaves a trail

u, e1, . . . , en, v in G. As the original circuit contained all edges of

G′ this trail contains all edges of G, so is an Eulerian trail for G.

Thus G is semi-Eulerian, and not Eulerian.

Now suppose that G is semi-Eulerian but not Eulerian. Then G

has an Eulerian trail a, e1, . . . , en, b (with a 6= b). Again we add a

new edge joining a and b and obtain a new graph G∗, which has an

Eulerian circuit: just follow e after completing the original Eulerian

trail. Hence every vertex of G∗ has even degree. Removing e we

get back to G again and we now see that every vertex of G except

a and b has even degree. Hence G has precisely 2 vertices of odd

degree.

Example 2.36. The following graph has exactly 2 vertices of odd degree and is therefore
semi-Eulerian.
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2.7 Hamiltonian graphs

People at a party are to be seated at a circular table. Is it possible to arrange the

seating so that everyone sits next to two people they know?

We can arrange a graph to reflect who knows who: each person is a

vertex and we join vertices if they know each other. Then the task

is to find a walk, begining and ending at the same vertex, including

every vertex and repeating no vertex twice. Such a walk gives us a

seating plan of the required type, and conversely any such seating

plan gives rise to one of these walks. We need names for such a

walks of course.
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Definition 2.37.

1. A path containing every vertex of a graph is called a Hamiltonian path.

2. A closed path containing every vertex of a graph is called a Hamiltonian closed
path.

3. A graph is called semi-Hamiltonian if it has a Hamiltonian path and Hamiltonian
if it has a Hamiltonian closed path.

Note:

1. By definition every Hamiltonian graph is semi-Hamiltonian. If

v0, . . . , vn, v0 is a Hamiltonian closed path then v0, . . . , vn is

a Hamiltonian path; so a Hamiltonian graph contains both an
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open and a closed Hamiltonian path.

2. A semi-Hamiltonian graph is necessarily connected.

Example 2.38.

1. The walk a, b, c, d is a Hamiltonian path in the graph G1 below. Therefore G1 is
semi-Hamiltonian.

ab

c d

G1

2. The walk 1, 2, 3, 4, 5, 1 is a Hamiltonian closed path in the graph G2 below. Therefore
G2 is Hamiltonian.

1

2 3

4

5

G2

3. The graph G3 below is not semi-Hamiltonian (and therefore not Hamiltonian).

G3

4. The complete graph K2 is semi-Hamiltonian but not Hamiltonian. For d 6= 2 the
graphs Kd are Hamiltonian.

5. The cycle graphs are Hamiltonian for d ≥ 1.

6. The wheel graph Wd is Hamiltonian for d ≥ 2. The wheel graph W1 is semi-
Hamiltonian but not Hamiltonian.
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7. Construct a graph with one vertex corresponding to each square of a chess-board and
an edge joining two vertices if a knight can move from one to the other. We call this
the knight’s move graph.

The knight’s move graph

Here is a Hamiltonian closed path for the knight’s move graph.

Example 2.39. Note that although there are theorems relating Eulerian and Hamiltonian
graphs there do exist graphs with any combination of these properties:
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A graph which is Hamiltonian and
Eulerian

A graph which is Eulerian and
non-Hamiltonian

A graph which is Hamiltonian and
non-Eulerian

A graph which is non-Eulerian and
non-Hamiltonian

2.8 Trees

Definition 2.40. A closed path of length at least 1 is called a cycle.

1. A forest is a graph with no cycle.

2. A tree is a connected graph with no cycle.

Example 2.41. A forest:

Note:
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1. Forests and trees are, by definition, simple graphs.

2. A connected subgraph of a forest is a tree.

3. The connected components of a forest are trees. A forest with

one connected component is a tree.

4. A subgraph of a tree is a forest.

One obvious question is how many non-isomorphic trees are there

with a given number of vertices. Here are some results in this

direction.

Example 2.42.

1. There is only one tree with one vertex, N1. There is only one tree with 2 vertices,
K2. There is only one tree with 3 vertices:

2. There are 2 trees with 4 vertices:

3. There are 3 trees with 5 vertices.
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4. There are 6 trees with 6 vertices and 11 trees with 7 vertices (see the Exercises).

5. There are 23 trees with 8 vertices:

There are several possible ways of formulating the definition of a tree. Starting from
the above definition we can prove the next theorem, which could have been used as the
definition.

Lemma 2.43. If a graph G contains two distinct paths from vertices u to v then G contains
a cycle.

Proof. Amongst all pairs of distinct paths with the same initial and

terminal vertices choose a pair such that the sum of their lengths is

minimal. Suppose this is the pair of paths

p = u0, . . . , um and q = v0, . . . vn,
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where u0 = v0 and um = vn. Suppose that ui = vj for some i, j,

with 0 < i < m and 0 < j < n. Then either there is a pair of

distinct paths from u0 to ui or from ui to um which have smaller

lengths than p and q. This contradicts our choice of p and q, so can-

not occur. It follows that u0, u1, . . . , um = vn, vn−1, . . . , v1, v0 = u0

is a cycle.

Theorem 2.44. A graph G is a tree if and only if there is exactly one path from u to v,
for all pairs u, v of vertices of G.

Proof. First suppose that G is a tree. Then, by definition, G is

connected. Therefore G there is at least one path from u to v, for

all vertices u, v of G. Suppose there exist vertices u and v of G with

two distinct paths from u to v. Then, using the result of Lemma

2.43, it follows that G contains a cycle. Thus G is not a tree, a

contradiction. Thus there is exactly one path from u to v whenever

u and v are vertices of G.
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Conversely suppose G is a graph which has the property that

there is exactly one path from u to v whenever u and v are vertices of

G. Then G is certainly connected. If G contains a cycle v0, . . . en, v0

then there are distinct paths v0, . . . , en, v0 and v0 (a path of length

zero) from v0 to v0, a contradiction. Hence G is connected and

contains no cycle and so is a tree.

Here is yet another characterising property of trees.
Theorem 2.45. Let G be a graph with n vertices. Then G is a tree if and only if it is
connected and has n− 1 edges.

Proof. First we prove that a connected graph with n vertices and

n − 1 edges must be a tree. We use induction on n the number

of vertices; starting with the case n = 1. In this case the number

of edges is 0, so we have a tree. The inductive hypothesis is that,

for some n ≥ 0, every connected graph with n vertices and n − 1

edges is a tree. In the inductive step we take a connected graph

G with n + 1 vertices and n edges and we must show that it is
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a tree. First consider the possibility that all vertices of G have

degree more than one. In this case, from the Handshaking Lemma,

we have 2|E| =
∑

v∈V deg(v) ≥ 2(n + 1), so |E| ≥ n + 1, a

contradiction. Therefore G has a vertex of degree at most one.

Since G is connected and has at least two vertices it has no vertex

of degree 0, so it has a vertex v of degree 1. Form a new graph

G− v by removing v and the edge to which it is incident.

Now G− v has n vertices and n− 1 edges and is connected, so is

a tree. Therefore G is also a tree, because no cycle can contain the

vertex v or edge e, as v has degree one. By induction the result

holds for all n.

Now we must prove that if G is a tree with n vertices then it’s

connected and has n− 1 edges. Certainly, by definition of a tree, G

is connected. We shall use induction on the number m of edges of
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G this time. Suppose to begin with that G has 0 edges. Then it can

only be connected if it has 1 vertex, so n = 1 and m = n− 1. The

inductive assumption is that if G has k edges, where 0 ≤ k ≤ m−1,

for some m ≥ 1, then n = k + 1. Now we suppose that G is a tree

with n vertices and m edges. Pick an edge e of G and form a new

graph G− e by removing e from G:

If G − e is connected then it contains a path from one end point

u of e to the other, v say. This is also a path in G which now has

two paths from u to v (the second one is u, e, v). Hence G is not

a tree, a contradiction. Therefore G− e is disconnected. In fact it

has two connected components A consisting of all vertices that are

connected to u by a path not involving e and B consisting of all

vertices b connected to u by a path b, . . . , v, e, u in G involving e:
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these are all connected to v by a path in G−e. Now both A and B

are trees. Suppose A has m1 edges and B has m2 edges. Then A has

m1 + 1 vertices and B has m2 + 1 vertices, by induction. Moreover

every vertex of G is a vertex of A or B so n = m1 + 1 + m2 + 1 =

m1 + m2 + 2 and G has m = m1 + m2 + 1 edges. Therefore

n = m + 1, as required. Hence the result holds for all m ≥ 0.

2.9 Spanning Trees

Definition 2.46. Let G be a graph. A spanning tree for G is a subgraph of G which

1. is a tree and

2. contains every vertex of G.

A graph which has a spanning tree must be connected. A graph

may have many different spanning trees.

Example 2.47. In the diagrams below the solid lines indicate some of the spanning trees
of the graph shown: there are many more.
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Theorem 2.48. Every connected graph has a spanning tree.

Proof. Suppose that there exists a connected graph which has no

spanning tree. Amongst all such graphs choose one with fewest

edges, and suppose it has m edges. As G does not have a spanning

tree it can’t be a tree so must contain a cycle C say. Remove an

edge e from C to form the connected graph G− e (Why is G− e

connected?). As G − e has fewer edges than G it has a spanning

tree T : but this is also a spanning tree for G (because G and G− e
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have the same vertices) a contradiction.

The above proof suggests an algorithm for construction of a spanning tree of a graph.
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The cut-down algorithm
Given a connected graph G to construct a spanning tree:

1. If G is a tree stop.

2. Choose an edge e from a cycle and replace G with G− e. Repeat from 1.

Example 2.49. Starting with the Petersen graph:

Another approach is the following.

The build-up algorithm
Given a connected graph G to construct a spanning tree:

1. Start with a graph T consisting of the vertices of G and no edges.

2. If T is connected stop.

3. Add an edge e of G to T which does not form a cycle in T . Repeat from 2.
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Example 2.50. This time starting with the Petersen graph:

Proof that the cut-down and build-up algorithms stop when T is

a spanning tree for G is straightforward. Strictly speaking neither

of these is an algorithm. Recall that a graph consists of a set V

of vertices and a set E of edges. The input to our algorithm is a
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list of the elements of V and a list of the elements of E. Given

such data we have described no way of testing whether the graph

G = (V, E) contains a cycle or whether the graph is connected. A

genuine algorithm can be constructed based on these ideas but we

shall not cover this here.

2.10 Weighted graphs

It is often useful to associate further information to the edges and vertices of a graph.
For example the edges of a graph may represent roads, in which case we may wish to as-
sociate a distance, cost of travel or speed restriction to each edge. If the vertices represent
places we may require them to carry additional information about population, tempera-
ture or cost of living. We concentrate here on graphs in which additional information is
associated to edges. We assume that the required information is encoded as a number.

Definition 2.51. Let G be a connected graph with edge set E. To each edge e ∈ E assign
a non-negative real number w(e). Then G is called a weighted graph and the number
w(e) is called the weight of e. The sum

W (G) =
∑
e∈E

w(e)

is called the weight of G.

Example 2.52. The following drawing shows a weighted graph G. The weight of edge
{A, S} is w({A, S}) = 99 and the weight of edge {O, P} is w({O, P}) = 24. The graph
has weight W (G) = 652.
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The Minimum Connector Problem

A subgraph of a connected graph G which contains all the vertices of G is called a
spanning subgraph. We have seen several examples of spanning trees and obviously
every spanning graph must contain a spanning tree.

In a connected, weighted graph the problem of finding a spanning subgraph of minimal
weight is called the minimal connector problem. A spanning subgraph of minimal weight
is always a spanning tree, so the problem is to find a spanning tree of minimal weight. The
following algorithm does so. Again we leave aside the problem of testing for a cycle.

The Greedy Algorithm (also known as Kruskal’s Algorithm)

Let G be a connected weighted graph. To find a spanning tree T for G of minimal
weight:

Step 1 Start with the forest T consisting of all vertices of G and no

edges.

Step 2 Choose an edge e of G of minimal weight amongst all those

not in T . Add e to T if this does not create a cycle in T .

AJD September 18, 2009



MAS2216 Notes 93

Step 3 If T is connected then T is a minimal weight spanning tree

so stop. Otherwise repeat from Step 2.

A proof that the Greedy Algorithm outputs a minimal weight span-

ning tree can be found in most introductory texts in Graph Theory.

Example 2.53. The algorithm proceeds as shown on the weighted graph G below, pro-
ducing forests T1, . . . , T5 the last of which, T5, is a minimal weight spanning tree. Note
that there are some choices that have to be made in the running of the algorithm on this
graph. For instance, either of the edges of weight 2 could have been included in T . A
different choice results in a different minimal weight spanning tree, of which there may be
many.
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The Travelling Salesman Problem

A problem which arises in many applications is: “Given a connected weighted graph
G, find a closed walk in G containing all vertices of G and of minimal weight amongst all
such closed walks.” This problem proves to be very difficult to solve in general. An easier
problem, which we shall call the Travelling Salesman problem is: “Given a connected
weighted graph G, find a minimal weight Hamiltonian closed path in G.” The Travelling
Salesman problem is easier in the sense that there are fewer possible solutions, so the search
has fewer items to consider. However it is still very difficult to solve. We show here how
the algorithm for the Minimum Connector problem can be used to find a lower bound for
the Travelling Salesman problem. First however we establish some useful notation.

Definition 2.54. Let G be a graph and let v be a vertex of G. The graph G− v obtained
from G by deleting v is defined to be the graph formed by removing v and all its incident
edges from G.

Example 2.55.

a

b

G

b

G− a

a

G− b

Suppose that G is a weighted graph. Let C be a Hamiltonian closed

path of minimal weight in G and let v be any vertex of G. Delete
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the vertex v from G to leave a weighted graph G− v. Now C − v

is a Hamiltonian path in G − v and is therefore a spanning tree

for G − v. In particular G − v is connected. Suppose that the

weight of a minimal weight spanning tree for G − v is M . Then

w(C − v) ≥ M but note that it is possible that C − v is not of

minimal weight, so it may be that w(C − v) > M . Next consider

the two edges e1 and e2 of the closed path C which are incident to v.

Let m1 and m2 be the weights of two edges of least weight incident

to v. Then w(e1) + w(e2) ≥ m1 + m2 and again it is possible that

equality does not hold here. We now have

w(C) = w(C − v) + w(e1) + w(e2) ≥ M + m1 + m2.

We have shown that:

Theorem 2.56. If G is a weighted graph, C is a minimal weight Hamiltonian closed path
in G and v is a vertex of G then

w(C) ≥ M + m1 + m2,
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where M is the weight of a minimal weight spanning tree for G− v and m1 and m2 are the
weights of two edges of least weight incident to v.

As pointed out above the inequality in this Theorem may be strict.

Thus, what we have is a lower bound for the Travelling Salesman

problem, which in some cases may be smaller than the weight of

minimal weight Hamiltonian closed path.

Example 2.57. We shall find a lower bound for the Travelling salesman problem in the
weighted graph G below by removing vertex A.
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Removing A we obtain the weighted graph G− A:

3
3

4

4

4

5

B

C D

E
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Running the Greedy Algorithm on G − A we might obtain any of the minimal weight
spanning trees below. We show all three only for purposes of illustration: any one will
suffice. In this case we have M = 10.

33 4

B

C D

E

Spanning Tree 1

3
3

4B

C D

E

Spanning Tree 2

3
3 4

B

C D

E

Spanning Tree 3

The edges of minimal weight incident to A are {A, C} and {A, D} which have weights

m1 = 2 and m2 = 4. Combining this information we have a lower bound of 10+2+4 = 16.

In this example it is relatively easy to see that there is no Hamil-

tonian closed path of weight 16. In fact, if there were then the

argument justifying the above theorem shows that we should be

able to form such a closed path using a minimal weight spanning

tree for G− A and two edges incident to A. However, as you can

easily check, G − A has only 3 minimal spanning trees and they

are shown above. None of these is part of a Hamiltonian closed

path of weight 16 so no such closed path exists. However there is a
AJD September 18, 2009



MAS2216 Notes 98

Hamiltonian closed path of weight 17, as shown below. Therefore

the minimal weight of a Hamiltonian closed path in the graph G is

17.

2
3

3 4

5

A

B

C D

E

2.11 Planar Graphs

An electronics engineer wishes to make a board on which there are 3 input terminals

and 3 output terminals. Each input terminal is to be connected to all output terminals.

Connections are to be made by lines of solder laid on the board (not necessarily straight).

Two different lines of solder must not cross. Is this possible?

Here is the board: We can interpret the problem in graph theory as
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follows. We have 6 vertices, 3 white, representing input terminals,

and 3 black, representing output terminals. We form a graph by

joining each white vertex to all black vertices. This is a well known

graph called the complete bipartite graph K3,3.

The complete bipartite graph K3,3

To show how to construct the board we must draw this graph in

such a way that none of the edges cross each other. Can we do it? If

you try it you’ll find it doesn’t seem so, but it’s hard to be certain.

Here we develop the theory necessary to show that it really isn’t

possible.

Definition 2.58. A graph is planar if it can be drawn in the plane without edges crossing.

Example 2.59. 1.
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The two graphs drawn below are isomorphic. Therefore they

both represent a planar graph.

2.

It is easy to see that the left hand graph below is planar. The

right hand one is non-planar. To verify non-planarity from

scratch requires some effort. Here we shall develop some tests

which can be used to check quickly whether or not a graph is

planar.
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A planar graph divides the plane up into polygonal regions which

we call faces. In the Example 2.59 the first graph divides the

plane into 7 regions. (Note that in each case one of the regions is

unbounded.) The following definition attempts formalise this idea.

Definition 2.60. Let D be a planar graph (drawn on the plane). If x is a point of the
plane not lying on D then the set of all points of the plane that can be reached from x
without crossing D is called a face of D. One face is always unbounded and is called the
exterior face.

(To make a rigorous definition of face requires the Jordan Curve theorem, which says
that a simple closed curve in the plane divides the plane into two parts, one inside and one
outside the curve. This theorem is beyond the scope of this course.)

Example 2.61. 1. All trees are planar with one face (which is exterior).

2. The graph below has 9 faces labelled a, . . . , i. Face h is the exterior face.

a

b

c

de
f

g

h i

Euler noticed that for a plane drawing of a platonic graph with n vertices m edges and
r faces the sum n−m + r = 2. He went on to prove the following theorem.

Theorem 2.62 (Euler’s Formula). Let G be a connected plane graph (i.e. a plane drawing
of a connected graph) with n vertices, m edges and r faces. Then n−m + r = 2.
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Proof. We use induction on c, the number of disjoint cycles of G.

We begin with c = 0. In this case G is a connected graph with no

cycle: that is a tree. Therefore G has 1 (exterior) face. Also, if G

has n vertices then m = n−1. Hence n−m+r = n−(n−1)+1 = 2,

as required.

The inductive assumption is that, for some c ≥ 0, a planar graph

with c or fewer disjoint cycles has n−m + r = 2.

For the inductive step assume that G has c + 1 disjoint cycles.

Choose a cycle C and let e be an edge of C. Form a new graph

G − e from G by removing the edge e. Now G − e has n vertices

and m − 1 edges, is still planar and connected (as e was an edge

of a cycle) and has c cycles, so by the inductive assumption has

n − (m − 1) + r′ = 2, where r′ is the number of faces of G − e.

What is r′? The cycle C can be regarded as cutting the plane into
AJD September 18, 2009



MAS2216 Notes 103

2: its inside and its outside:

The faces of G are all either inside or outside C. The edge e is

an edge of the cycle, so meets exactly 2 faces, one on the inside

and one on the outside of C. Consequently when we remove it we

combine both these faces into one. All other faces are untouched

so r′ = r − 1. Therefore we have n − (m − 1) + (r − 1) = 2, so

n−m + r = 2, as required.

Definition 2.63. Let F be a face of a planar graph. The degree of F , denoted deg(F )
is the number of edges in the boundary of F , where edges lying in no face except F count
twice. (To compute deg(F ) walk once round the boundary of F , counting each edge on
the way.)
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In Example 2.61.2 above faces a, i and h have degrees 9, 2 and 14,

respectively.
The degree of a face has much in common with the degree of a vertex. Compare the

following to Lemma 3.1.

Lemma 2.64. If G is a planar graph with m edges and r faces F1, . . . , Fr then
r∑

i=1
deg(Fi) = 2m.

Proof. Every edge meets either one or two faces. Edges meeting

only one face contribute 2 to the degree of their face. Edges meeting

two faces contribute 1 to the degree of each of their faces. The result

follows.

We can use Euler’s formula to find graphs which are non-planar.

Corollary 2.65. If G is a simple connected planar graph with n ≥ 3 vertices and m edges
then m ≤ 3n− 6.

Proof. Let D be a plane drawing of G with r faces. As G is simple

every face of D has degree at least 3. (Why?) Therefore

2m =
∑

f a face
deg(f) ≥ 3r.
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Hence 2m/3 ≥ r and substitution in Euler’s formula gives

2 = n−m + r ≤ n−m + (2m/3) = n−m/3.

The result follows.

Corollary 2.66. If G is a connected simple planar graph with n ≥ 3 vertices, m edges and
no cycle of length 3 then m ≤ 2n− 4.

Proof. A plane drawing of G can have no face of degree less than

4. The proof proceeds as that of Corollary 2.65, except that this

time 2m ≥ 4r.

We can now prove the following.

Theorem 2.67. The complete graph K5 and the complete bipartite graph K3,3 are both
non-planar.

Proof. As K5 has 5 vertices it can be planar only if it has 9 or fewer

edges (Corollary 2.65). As K5 has 10 edges it cannot be planar.
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Similarly, if K3,3 is planar then Corollary 2.66 implies that it has

at most 8 edges. As K3,3 has 9 edges it cannot be planar.

If a graph G is non-planar then any graph which contains G as a subgraph is also non-
planar. It follows that if a graph contains K5 or K3,3 as a subgraph it must be non-planar.
We can however prove a stronger result. First some terminology.

Definition 2.68. A graph H is a subdivision of a graph G if H is obtained from G by
the addition of a finite number of vertices of degree 2 to edges of G.

Note that in this definition it is possible to add no vertices and so a graph is a subdivision
of itself.

Example 2.69. The graph H below right is a subdivision of the graph G below left.

G H

The following theorem is an easy consequence of Theorem 2.67.

Theorem 2.70. If G is a graph containing a subgraph which is a subdivision of K5 or K3,3
then G is non-planar.

Proof. A subdivision of a non-planar graph is also non-planar. The

Theorem therefore follows from Theorem 2.67.
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Example 2.71. Neither Corollary 2.65 nor Corollary 2.66 are sufficient to show that the
graphs of this example are non-planar.

1. The Petersen graph shown below has 10 vertices and 15 edges. The diagram on the
right shows a subgraph which is a subdivision of K3,3. Therefore the graph is non-
planar. (Vertices which are not labelled A or B are those added in the subdivision.

A

A

A B

B

B

2. The graph shown below has 11 vertices and 18 edges. The diagram on the right
shows a subgraph which is a subdivision of K5. Therefore the graph is non-planar.

1

2

3 4

5

A more surprising theorem, which we shall not prove here, is known as Kuratowski’s
theorem:

Theorem 2.72 (Kuratowski). If G is a non-planar graph then G contains a subgraph
which is a subdivision of K5 or K3,3.

2.12 The Four-Colour Problem

In 1852 De Morgan made the conjecture that any map of countries could be coloured
using only 4 colours, in such a way that countries with a common border would have
different colours.

We can interpret this question in terms of graph theory: given a map of countries we
construct a planar drawing of a graph as follows. Place one vertex in each country (the
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“capital” of the country). Join two vertices with an edge whenever their countries have a
common border.

Example 2.73. The map of countries on the left gives rise to the planar graph on the right.

Now, colouring a map with four colours, so no two neighbouring countries are the same
colour, corresponds to colouring the vertices of the graph with four colours so that no two
adjacent vertices are the same colour. Such a colouring is called a 4-colouring of the
graph. If it could be shown that any planar graph without loops is 4–colourable then it
would follow that every map of countries can be coloured as required by De Morgan. The
graph theoretic version of the conjecture is therefore:

Conjecture 2.74 (The 4–colour problem).
Every simple planar graph is 4–colourable.

The problem has a long and chequered history.

1852 De Morgan proposes the 4–colour conjecture.

1873 Cayley presents a proof to the London Mathematical Society. The proof is fatally
flawed.

1879 Kempe publishes a proof; which collapses.

1880 Tait gives a proof which turns out to be incomplete.

1976 Appel & Haken at the University of Illinois prove the 4–colour conjecture: using
thousands of hours of CPU time on a Cray computer.

A problem with Appel & Haken’s proof is that the program runs for so long that it is
impossible to verify manually. We cannot even to be sure that the hardware performed
well enough, over such an extended period, to give a reliable result.

By contrast a 6–colour theorem is easy to prove.
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Theorem 2.75.
Every simple planar graph G is 6–colourable.

Proof. Use induction on n, the number of vertices of G. Clearly if

n ≤ 6 the result holds. Assume the result holds for simple planar

graphs of up to n− 1 ≥ 6 vertices.

From the result of Exercise 6.2(b), G has a vertex v of degree

at most 5. Delete v from G to form the graph G − v, which is

6–colourable, by the inductive hypothesis. Choose a 6–colouring

for G − v. Now replace v. Note that, as v has degree at most 5,

there is one of the 6 colours not used to colour any of the vertices

adjacent to v. Colour v with this colour to give a 6–colouring of

G.

A proof of a 5–colour theorem, although somewhat harder, can be found in most intro-
ductory texts on graph theory.

We finish with a result which links vertex and edge colouring. The map of countries
shown above does itself constitute a graph: put a vertex at each point where two borders
meet. The resulting graph is plane, connected, regular of degree three and has no bridges
or loops. Furthermore any “reasonable” map of countries constitutes a plane drawing of
a graph with all these properties. The 4–colour conjecture states that the faces of such
a plane graph can be coloured using 4 colours, where colouring means that no edge
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meets two faces of the same colour. In 1880 Tait made the following connection between
4–colouring of faces and edge–colouring.

Theorem 2.76. Let G be a plane drawing of a graph which is connected, regular of degree
three and has no bridges or loops. Then the faces of G can be coloured using 4 colours if
and only if G has a proper edge–colouring using 3 colours.
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MAS2216/MAS3216 Enumeration and Combinatorics

Assignment Exercises

Your answers to questions should show your working and reasoning. Marks
are not awarded for correct answers but for comprehensible, well-reasoned
arguments leading to these correct answers, written clearly and legibly.

The list of questions to be handed in for assesment, and their due dates, will
be circulated by email.

1 Enumeration

1.1 I have a drawer full of socks, 14 red and 8 blue. If I get dressed in the dark, so I
can’t tell which colour socks I’m getting out, how many socks do I need to get out to
be sure I have a pair the same colour. How many do I need to get out to guarantee
I get a blue pair and how many do I need to get out to guarantee a red pair?

1.2 27 boys and 15 girls are to be lined up in a row. How many ways can this be done?
How many ways can this be done so that all the girls are together? Answer both parts
of the question first under the assumption that all the boys and girls look different
from each other and second under the assumption that all boys look the same and
all girls look the same.

1.3 How many words can be made from the letters A, A, A, A, A, A, L, L, M, M, M, N,
N, N. How many can be made with all N’s following each other (that is containing
subword NNN)?

1.4 How many sequences of length n can be made from the 36 symbols 0–9 and A–Z
with no symbol repeated twice, where n is (a) 36; (b) 14; (c) > 36?

1.5 I wish to seat 16 people be around 2 tables each with 8 places. I want to do this on
as many consecutive nights as possible. However there are some conditions that may
be set as follows.

(a) If a person sits in the same chair on 2 separate occasions then I will be thrown
into a snake pit.

(b) If the same two people sit next to each other and at the same table on two
separate occasions I shall have to drink Newcastle Brown Ale for the rest of the
evening.

(c) If the same two people sit next to each other (at either table) on two separate
occasions I shall have to watch England playing cricket.

1
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In case (5a) how many nights can I survive without being thrown to the snakes. In
case (5b) how many nights can I survive without having to drink a bottle of brown.
In case (5c) how many nights can I survive before the final punishment.

1.6 How many subsets does the set {a1, . . . , an} of n elements have? How many subsets
are there containing the element a1? Prove your claim.

1.7 As shop keeps 6 styles of shoes and you want to give each of your 24 nieces one pair
of shoes. It turns out the shop has in stock exactly 4 pairs in each style. How many
ways are there of distributing shoe styles to nieces. (All nieces are different.)

1.8 How many ordered 5-subsets of {0, . . . , 9} are there? How many of these start with
0? How many positive integers of exactly 5 digits, but with no two digits the same,
are there? (In base 10.)

1.9 A competition is to be organised during a 45 day period. The organiser must schedule
8 match days and a 2-day final (the 2 finals days being consecutive). Between each
of the match days there must be at least 3 rest days with no matches. After the
eighth match day and before the finals there must be at least 5 days of rest with no
matches. How many ways are there to schedule the competition?

1.10 Let k and n be positive integers such that k ≤ (n− 1)/2. Show, using an algebraic
argument, that (

n

k

)
≤

(
n

k + 1

)
,

with equality if only if k = (n− 1)/2.

1.11 Prove that ∑
a1+a2+a3+a4+a5=n

(
n

a1, a2, a3, a4, a5

)
= 5n and

∑
a1+a2+a3+a4+a5=n

(
n

a1, a2, a3, a4, a5

)
(−1)a1+a3+a5 = (−1)n,

where the ai are non-negative integers.

1.12 Use Inclusion-Exclusion to find how many integers n there are with 1 ≤ n ≤ 100
which are not divisible by any of the numbers 3, 5 or 7.

1.13 A class of 8 students take a test and then mark each others work. The scripts must
be distributed to the students for marking so that noone marks their own script (and
each student marks exactly one script). How many ways can this be done? (Compute
this number explicitly.)
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1.14 Find the number of compositions of 2m into parts of even size, where m is a non-
negative integer. How many ways are there of putting 24 identical socks into (la-
belled) piles each of which has an even (positive) number of socks in it. (The number
of piles is not fixed; but must clearly be at least 1 and at most ....)

1.15 Use Lemma 1.36 and examples from the notes to find S(4, k), for k = 1, 2, 3, 4. (You
can quote the value of S(4, 2) from the notes.)
Now use Lemma 1.36 again to find S(5, k), for k = 1, . . . , 5. (Don’t quote the value
of S(5, 2) found in the problem class questions.)
Next compute S(5, 3) again, this time using Theorem 2.19.
How many ways are there of dividing a class of 5 people into 3 non-empty groups?

1.16 Write down all integer partitions of 12 into 5 parts and so find p5(12).

2 Graph Theory

2.1 There are 11 non-isomorphic simple graphs with 4 vertices. Draw all those with
(a) no edges; (b) 1 edge; (c) 2 edges; (d) 3 edges; (e) 4 edges (f) 5 edges;
(g) 6 edges; (h) more than 6 edges (if any).

2.2 If v is a vertex of a graph G then we define the graph G − v to the graph obtained
from G by deleting v and all edges incident to v. If e is an edge of G then G− e is
the graph obtained by deleting the edge e from G. Let G be a graph with n vertices
and m edges. Let v be a vertex of G of degree d and let e be an edge of G. How
many vertices and edges have G− v and G− e? Justify your answers.

2.3 In the graph G of Figure 1 below find

(a) an open trail of length 7, which is not a path;
(b) an open path of length 11;
(c) cycles of length 6 and 10. (A cycle is a closed path of length at least 1.)

Does the graph G have any circuits, of positive length, which are not cycles? If not
why not?

2.4 Which of the following graphs are Eulerian, which are semi-Eulerian but not Eulerian
and which are not semi-Eulerian? Wheel graphs W1, W2 and Wn, where n ≥ 3.
Complete graphs K5, K2n, K2n+1, where n ≥ 1.

2.5 Secret service agents A, B, C, D, E and F must meet in pairs in an underground
bunker to exchange vital information. For security reasons no two pairs may meet
at once. To preserve the integrity of the information it is preferred that one of the
participants at each meeting (except the last) is present at the next. The following
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1

2

3

4

5

6 7

8

9

10

11

12

13 14

Figure 1: G

pairs must meet (in some order).
A must meet B and F .
B must meet C, D and E.
C must meet E and F .
D must meet F .
E must meet F .
How can this be done so that only these pairs meet, in the shortest possible time.
Justify your answer and give an appropriate ordering if possible. [Hint: Construct
a graph with vertices corresponding to agents and two vertices joined if their agents
meet. The requirement is then to list all edges in such a way that for each edge in
the list one of its vertices appears in the next edge on the list. This means you need
an .]

2.6 Which of the following are Hamiltonian and which are semi-Hamiltonian. Give your
reasons. In particular find Hamiltonian closed paths for those which are Hamiltonian
and Hamiltonian paths for those which are semi-Hamiltonian but not Hamiltonian.
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(a) (b) (c)

2.7 Draw all trees with 7 vertices (there are 11).

2.8 Let T1 and T2 be spanning trees of a connected graph G.

(a) Show that if e is an edge of T1 then there is an edge f of T2 such that (T1−e)∪f
is a spanning tree for G. [Hint: Suppose e = {u, v}. Then T1− e is the disjoint
union of two components with u and v in different components. There is a path
from u to v in T2 some edge of which must join one component to the other.]

(b) Deduce that T1 can be transformed into T2 by replacing edges of T1 with edges
of T2, one at time in such a way that a spanning tree for G is obtained at each
stage.

2.9 Let G be a simple connected planar graph with n ≥ 3 vertices, m edges and r faces.
Assume that every vertex of G has degree at least 3.

(a) Show that 2m ≥ 3n and use Euler’s formula to deduce that

2 ≤ r − (m/3).

(b) Assume now that all faces of G have degree either 5 or 6. Let p and h be
the number of faces of degree 5 and 6, respectively, so r = p + h. Show that
2m = 5p + 6h. Use this and the previous part of the question to show that
p ≥ 12 in this case.

(c) Under the conditions of (9b), show that if G is also regular of degree 3 then
p = 12.

(d) Draw a (planar) diagram of a simple connected planar graph which has 7 faces
altogether and
• an exterior face of degree 10,
• 6 faces of degree 5, precisely one of which does not meet the exterior face,
• 5 vertices of degree 2, all meeting the exterior face, and all other vertices of

degree 3.
Explain how this can be used to construct a simple planar connected graph
which is regular of degree 3 and has 12 faces of degree 5.
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(e) Find, and draw diagrams, of all simple connected planar graphs such that every
face is of degree 3 and
• all vertices have degree 3; and then
• all vertices have degree 4.

Show all your working and before drawing any diagram write down the number
of vertices, edges and faces of the graph you are going to draw.
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MAS2216/MAS3216 Enumeration and Combinatorics

Problem Class Exercises

1 Enumeration

1.1 At a canteen for lunch I can either have a sandwich or a pizza. The sandwiches come
with 4 different types of bread and 7 different fillings. The pizzas have 3 different
types of base and 6 different toppings. How many choices do I have?

1.2 A backgammon competition is organised for n players. During the competition each
player will play all other n − 1 players. Show that at any given point during the
competition there are at least two players who have completed the same number of
their matches as each other.

1.3 How many different words can be made from the letters U, U, U, U, V, V, V, W, W,
X, X? How many are there such that the two X’s do not occur next to each other?

1.4 How many injective functions are there from a set of size k to a set of size n? Compare
the number of functions from a set X of size k to a set Y of size 365 to the number
of injections from X to Y . Use this to find the probability that amongst k people
two of them have the same birthday. (Ignore leap years.)

1.5 Suppose 12 people are to be seated around a table but that one person, Cleopatra,
always sits at the head of the table. How many seating arrangements are possible, if
two arrangements are the same only if people sit in the same chairs?

1.6 How many ways can 12 people be seated at a round table if two seating arrangements
are said to be the same when the same people sit next to each other.

1.7 How many different ways are there of seating 16 people at 2 circular tables, one of 9
and one of 7. First assume that the chairs are labelled and two seating plans are the
same only if the same people sit in the same chairs. Then answer the question under
the assumption that two seating plans are the same if the same people sit next to
each other.

1.8 There are 30 students in a class, 19 female and 11 male. How many ways are there
to choose a group of 7 containing at least one male and one female.

1.9 In spelling test every question is worth 1 mark. The test is taken by 10 children and
a total of 32 answers are correct. How many different mark distributions are possible.

1.10 A group of 6 families from different countries swap houses for a 1 week holiday.
Nobody can go to their own house so how many ways can this be arranged?
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1.11 A student has to take 15 hours of classes every week. (Classes run Mon-Fri.) At least
3 classes must be taken on Monday, at least 1 on Tuesday, at least 3 on Wednesday
and at least 2 on Friday.

(a) How many different possibilities are there for the numbers of classes that can
be taken on each day?

(b) What’s the answer if exactly one class must be taken on a Tuesday?

1.12 Find the number of weak compositions of 27 into 7 parts each of which is odd.
Generalise this to find the number of weak compositions of 2n + 1 into 2k + 1 odd
parts, for integers 0 ≤ k ≤ n.

1.13 List all the partitions of the set {1, 2, 3, 4, 5} into 2 non-empty subsets and so find
the Stirling number S(5, 2).

1.14 Find formulas for

(a) S(n, 2), and
(b) S(n, n− 2), for all n ≥ 2.

2 Graph Theory

2.1 Where possible draw the graphs below. If you can’t draw the graph say why not.

(a) A simple graph with 1 edge and 2 vertices.
(b) A simple graph with 2 edges and 2 vertices.
(c) A non-simple graph with no loops.
(d) A non-simple graph with no multiple edges.
(e) A graph with 6 vertices and degree sequence 〈1, 2, 3, 4, 5, 5〉.
(f) A simple graph with 6 vertices and degree sequence 〈1, 2, 3, 4, 5, 5〉.
(g) A simple graph with 6 vertices and degree sequence 〈2, 3, 3, 4, 5, 5〉.

2.2 Show, by labelling the vertices, that the graphs below are isomorphic.
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2.3 (a) Is it true that any two isomorphic graphs have the same number of vertices? If
so why?

(b) Let G1 and G2 be graphs and let φ be an isomorphism from G1 to G2. If v is a
vertex of G1 is it true that deg(v) = deg(φ(v)) and if so why? Show, using the
Handshaking Lemma, that G1 and G2 have the same number of edges.

(c) Show that isomorphic graphs have the same degree sequence.
(d) If two graphs have the same degree sequence, need they be isomorphic?

2.4 Let G be a simple graph with n ≥ 2 vertices. Can G have a vertex of degree 0? Can
G have a vertex of degree n− 1? Can G have a vertex of degree n or more?

(a) Show that G cannot have degree sequence 〈0, 1, . . . , n− 1〉. [Hint: Consider the
vertex of degree 0 and that of n− 1.]

(b) Show that G must have 2 vertices of the same degree.

2.5 Which of the graphs (a), (b), (c) and (d) are isomorphic to subgraphs of the graph
G where G is of

(i) the complete graph Kn, where n ≥ 1 (the answer may not be the same for all
n);

(ii) the Petersen graph;
(iii) the graph of Example 3.6 in the notes;
(iv) the graph G below?

(a) (b) (c) (d)
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G

2.6 In the Petersen graph find

(a) a trail of length 5;
(b) a path of length 9;
(c) cycles of length 5 and 9.

Do you think the Petersen graph has any circuits, of positive length, which are not
cycles? If not why not?

2.7 Let G be a graph and let u and v be vertices of G (which may or may not be the
same). Suppose that G contains two distinct paths P and P ′ from u to v. (“Distinct”
means “not equal”.) Show that G contains a cycle.

2.8 Which of the following graphs are Eulerian, which are semi-Eulerian but not Eulerian
and which are neither?

(a) (b) (c)

2.9 A collection C1, . . . , Cn of Hamiltonian closed paths of a graph G is called a decom-
position into Hamiltonian closed paths if every edge of G belongs to one and only
one of the closed paths Ci. It is a fact that for all d ≥ 1 the complete graph K2d+1
has a decomposition into d Hamiltonian closed paths. Find a decomposition into 3
Hamiltonian closed paths of the complete graph K7.
Use the above fact to solve the following problem. King Arthur and his knights wish
to sit at the round table every evening in such a way that each person has different
neighbours on each occasion. If there are 10 knights (and 1 king) for how long can
they do this? If King Arthur wishes to make sure this can be done for 7 evenings in
a row how many knights must he have?
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2.10 Draw all spanning trees for the graphs below.

1

2 3
5

4

(a)

2 5

1

3

4

(b)

2.11 Let G be a connected graph and let e be an edge of G.

(a) Show that if e appears in every spanning tree for G that e is a bridge.
(b) Show that if e appears in no spanning tree for G then e is a loop.

2.12 (a) Find lower bounds for the travelling salesman problem corresponding to the
graph below

i. by removing vertex B and
ii. by removing vertex E.

A

B

C D

E

9

9

7

6

7

7
6

5
8

9

(b) Find the solution to the travelling salesman problem for this graph by inspection.

2.13 The girth of a graph is the length of its shortest cycle. Let G be a simple planar
connected graph with n ≥ 3 vertices and m edges. Show that if the girth of G is 5
then

(a) m ≤ 5
3(n− 2).

(b) Find the girth of the Petersen graph and use the inequality above to show that
the Petersen graph is non-planar.

(c) Generalize 2.13a) to planar graphs of girth g.
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2.14 Which of the following graphs are planar? For those that are planar give a drawing
in the plane. For those that are non-planar find subgraphs which are subdivisions of
K5 or K3,3.

(a) (b) (c) (d)

(e) (f)

2.15 Let G be a graph with n vertices and m edges.

(a) Show that if every vertex of a graph has degree at least 6 then m ≥ 3n.
(b) Use the previous part of the question and Corollary 2.65 to show that if G is a

simple connected planar graph then G has at least one vertex of degree d ≤ 5.
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SECTION A

A1. 25 boys and 16 girls are to be lined up in a row. How many ways can this be done?
How many ways can this be done so that all the girls are together? Answer both parts
of the question first under the assumption that all the boys and girls look different from
each other and second under the assumption that all boys look the same and all girls
look the same.

First assume we can tell everyone apart. There are 41 people altogether

so they can be ordered in 41! different ways. If all the girls must be

kept together first order the 25 boys: there are 25! ways of doing this.

Fix an ordering of the boys. The line of girls can come before the first

boy, between the ith and (i + 1)th boy, for i = 1, . . . , 25, or after the

25th boy. That is, in any one of 26 positions. Furthermore if we fix a

position for the line of girls there are then 16! ways of ordering this line.

Thus the total number of ways of lining them up with girls together is

25! × 26 × 16! = 26! × 16!. (These numbers are big enough that it’s not

worth writing them down.)

If we can’t tell boys apart or girls apart then the collection of boys and

girls constitutes a multiset of 41 elements. Therefore there are altogether

41!
25!16! = 103077446706

ways of lining them up. If the girls must all be kept together then there

are 26 possibilities, one for each of the 26 positions in which we can place

Question A1 continued on next page Page 2 of 8



the girls.

[10 marks]

A2. Prove that ∑
a1+a2+a3+a4=n

(
n

a1, a2, a3, a4

)
= 4n and

∑
a1+a2+a3+a4=n

(
n

a1, a2, a3, a4

)
(−1)a2+a4 = 0,

where the ai are non-negative integers.

These both follow from the multinomial theorem, the first by setting

xi = 1, for i = 1, . . . , 4, and the second by setting x1 = x3 = 1 and

x2 = x4 = −1.

[4 marks]

A3. Use Inclusion-Exclusion to find how many integers n there are with 1 ≤ n ≤ 100 which
are not divisible by any of the numbers 3, 5 or 7.

First we compute the number of integers which are divisible by 3, 5 or

7. Let Ai be the set of positive integers between 1 and 100 which are

divisible by i. The largest multiple of 3 no greater than 100 is 99 = 3×33,

so |A3| = 33. As 5×20 = 100 we have |A5| = 20. Similarly 7×14 = 98, so

|A7| = 14. Integers which are divisible by both 3 and 5 are precisely those

divisible by 15, so A3∩A5 = A15 and 6×15 = 90 so |A3∩A5| = |A15| = 6.

Similarly, A3 ∩A7 = A21 and 4 × 21 = 84 so |A3 ∩ A7| = |A21| = 4. Also

Question A3 continued on next page Page 3 of 8



A5×A7 = A35 and 2×35 = 70 so |A5×A7| = 2. Finally integers divisible

by 3, 5 and 7 are precisely those divisible by 105 so there are none in

the given range and |A3 ∩ A5 ∩ A7| = ∅. Using the inclusion-exclusion

theorem we have

|A3 ∪ A5 ∪A7| = |A3|+ |A5|+ |A7|

− |A3 ∩A5| − |A3 ∩A7| − |A5 ∩ A7|

+ |A3 ∩A5 ∩A7|

= 33 + 20 + 14− 6 − 4 − 2 + 0 = 55.

There are therefore 45 integers between 1 and 100 which are not divisible

by any of 3, 5 or 7.

[10 marks]

A4. State the Handshaking Lemma and use it to calculate the number of edges of the graph
K24.

The Handshaking Lemma states that the sum of degrees of vertices of a

graph is equal to twice the number of edges, that is:

∑
v∈V (G)

degree(v) = 2 × no. of edges of G.

K24 has 24 vertices all of degree 23 so it has (24× 23)/2 = 254 edges.

[4 marks]
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A5. In the graph below, which has vertices a, b, c, d, e and edges e1, · · · , e9, give an example
of

(a) A walk which is not closed and is not a trail;

a, e1, d, e4, c, e4, d.
(b) A trail which is not closed and is not a path;

a, e8, b, e9, c, e3, b.
(c) A closed trail which has positive length and is not a cycle.

a, e8, b, e9, c, e3, b, e2, a.

b c

d

e

a e1

e2

e3

e4

e5
e6

e7
e8

e9

[6 marks]
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A6. Draw all 6 spanning trees for the graph below.

[6 marks]
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SECTION B

B7. (a) Give the definition of a partition of a set X into k parts and of the Stirling number
S(n, k).

(b) The nth Bell number B(n) is defined to be the number of all partitions of {1, . . . , n}
into nonempty parts. That is

B(n) =
n∑

k=1
S(n, k).

(i) Consider the set X = {1, . . . , n, n + 1}.Show that there are(
n

i

)
B(i)

partitions of X into nonempty parts such that n + 1 lies in a block of size
n− i + 1.

(ii) Use the previous part of the question to show that

B(n + 1) =
n∑

i=1

(
n

i

)
B(i).

(iii) Prove by induction that if n ≥ 3 then B(n) < n!.

[30 marks]

B8. (a) State a theorem relating the number of vertices of a tree to the number of its edges.
(b) A bridge in a connected graph G is an edge e of G such that the graph G − e,

formed from G by removing e, is not connected. Show that every edge of a tree is
a bridge.

(c) (i) Let T be a tree. Show that addition of a new edge to T creates a cycle.
(ii) Let G be a graph and suppose that u and v are vertices of G lying in separate

connected components. Show that there is no path from u to v in G.
(iii) Let G be a graph with no cycles such that the addition of any new edge to G

creates a cycle. Show that G is a tree.
(d) (i) Let F be a forest with k connected components and n vertices. Show that F

has n− k edges.
(ii) Let H be a graph with n vertices, n − k edges and k connected components.

Show that H is a forest.

[30 marks]

Page 7 of 8



B9. (a) Let n be an integer n ≥ 3. Show that a simple graph G with n− 2 vertices has at
most 1

2(n2 − 5n + 6) edges.
(b) A plane triangulation is a drawing of a graph D in the plane, so that edges do not

cross and such that every face of D has degree 3. Draw a plane triangulation D
which has the graph Q below as a subgraph. (Don’t forget the exterior face.)

������

Q

Let P be a planar graph.
(i) Let F be a face of P of degree d > 3. Show that by adding a new vertex inside

F a new plane drawing can be made in which F is replaced by d faces of degree
3.

(ii) Explain how to construct a plane triangulation D which has P as a subgraph.
(iii) Let D be a plane triangulation with n vertices and m edges. Use Euler’s The-

orem to prove that m = 3n− 6.
(c) Find a subgraph of the graph below which is a subdivision of K5 or K3,3. Explain

(in no more than one line) why this means that the graph is non-planar.

[30 marks]

THE END
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SECTION A

A1. 25 boys and 16 girls are to be lined up in a row. How many ways can this be done?
How many ways can this be done so that all the girls are together? Answer both parts
of the question first under the assumption that all the boys and girls look different from
each other and second under the assumption that all boys look the same and all girls
look the same.

First assume we can tell everyone apart. There are 41 people altogether

so they can be ordered in 41! different ways. If all the girls must be

kept together first order the 25 boys: there are 25! ways of doing this.

Fix an ordering of the boys. The line of girls can come before the first

boy, between the ith and (i + 1)th boy, for i = 1, . . . , 25, or after the

25th boy. That is, in any one of 26 positions. Furthermore if we fix a

position for the line of girls there are then 16! ways of ordering this line.

Thus the total number of ways of lining them up with girls together is

25! × 26 × 16! = 26! × 16!. (These numbers are big enough that it’s not

worth writing them down.)

If we can’t tell boys apart or girls apart then the collection of boys and

girls constitutes a multiset of 41 elements. Therefore there are altogether

41!
25!16! = 103077446706

ways of lining them up. If the girls must all be kept together then there

are 26 possibilities, one for each of the 26 positions in which we can place

Question A1 continued on next page Page 1 of 8
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the girls.

[10 marks]

A2. Prove that ∑
a1+a2+a3+a4=n

(
n

a1, a2, a3, a4

)
= 4n and

∑
a1+a2+a3+a4=n

(
n

a1, a2, a3, a4

)
(−1)a2+a4 = 0,

where the ai are non-negative integers.

These both follow from the multinomial theorem, the first by setting

xi = 1, for i = 1, . . . , 4, and the second by setting x1 = x3 = 1 and

x2 = x4 = −1.

[4 marks]

A3. Use Inclusion-Exclusion to find how many integers n there are with 1 ≤ n ≤ 100 which
are not divisible by any of the numbers 3, 5 or 7.

First we compute the number of integers which are divisible by 3, 5 or

7. Let Ai be the set of positive integers between 1 and 100 which are

divisible by i. The largest multiple of 3 no greater than 100 is 99 = 3×33,

so |A3| = 33. As 5×20 = 100 we have |A5| = 20. Similarly 7×14 = 98, so

|A7| = 14. Integers which are divisible by both 3 and 5 are precisely those

divisible by 15, so A3∩A5 = A15 and 6×15 = 90 so |A3∩A5| = |A15| = 6.

Similarly, A3 ∩A7 = A21 and 4 × 21 = 84 so |A3 ∩ A7| = |A21| = 4. Also

Question A3 continued on next page Page 2 of 8
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A5×A7 = A35 and 2×35 = 70 so |A5×A7| = 2. Finally integers divisible

by 3, 5 and 7 are precisely those divisible by 105 so there are none in

the given range and |A3 ∩ A5 ∩ A7| = ∅. Using the inclusion-exclusion

theorem we have

|A3 ∪ A5 ∪A7| = |A3|+ |A5|+ |A7|

− |A3 ∩A5| − |A3 ∩A7| − |A5 ∩ A7|

+ |A3 ∩A5 ∩A7|

= 33 + 20 + 14− 6 − 4 − 2 + 0 = 55.

There are therefore 45 integers between 1 and 100 which are not divisible

by any of 3, 5 or 7.

[10 marks]

A4. State the Handshaking Lemma and use it to calculate the number of edges of the graph
K24.

The Handshaking Lemma states that the sum of degrees of vertices of a

graph is equal to twice the number of edges, that is:

∑
v∈V (G)

degree(v) = 2 × no. of edges of G.

K24 has 24 vertices all of degree 23 so it has (24× 23)/2 = 254 edges.

[4 marks]
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A5. In the graph below, which has vertices a, b, c, d, e and edges e1, · · · , e9, give an example
of

(a) A walk which is not closed and is not a trail;

a, e1, d, e4, c, e4, d.
(b) A trail which is not closed and is not a path;

a, e8, b, e9, c, e3, b.
(c) A closed trail which has positive length and is not a cycle.

a, e8, b, e9, c, e3, b, e2, a.

b c

d

e

a e1

e2

e3

e4

e5
e6

e7
e8

e9

[6 marks]
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A6. Draw all 6 spanning trees for the graph below.

[6 marks]
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Solutions to Section B

B6 (a) A partition of a set X into k parts is a collection S1, . . . , Sk of non-empty subsets of
X such that X = ∪k

i=1Si and Si ∩ Sj = ∅, whenever i 6= j.
The number of partitions of {1, . . . , n} into k parts is denoted S(n, k) and called a
Stirling number (of the second kind).

(b) First consider the number of non-empty subsets of {1, . . . , n + 1} which contain
n+ 1. These are the same as the subsets of {1, . . . , n}. The subsets of size n− i+ 1
containing n + 1 are the same as the subsets of size n− i of {1, . . . , n}. There are
therefore (

n

n− i

)
=

(
n

i

)
of them. Now given a block of size n − i + 1 containing n + 1 there are a further
(n + 1) − (n − i + 1) = i elements of {1, . . . , n} to be partitioned into non-empty
subsets. By definition there are B(i) partitions of the latter set. Thus the total
number of partitions of {1, . . . , n + 1} into non-empty parts such that n + 1 is in a
block of size n− i + 1 is B(i)

(
n
i

)
as claimed.

(c) Given any partition of {1, . . . , n + 1} into non-empty parts the element n + 1 lies
in a block of size ni + 1, for some i between 0 and n. From the previous part of the
question therefore the number of such partitions is

B(n + 1) =
n∑

i=0
B(i)

(
n

i

)
.

(d) When n = 3 we have n! = 6. B(3) is the number of partitions of {1, 2, 3} into
non-empty parts. Since S(3, 1) = 1 = S(3, 3) and there are 3 partitions into 2
parts: {1, 2} and {3},
{1, 3} and {2}, and
{2, 3} and {1}, we have S(3, 2) = 3, so B(3) = 5. Hence the result holds when
n = 3.
Assume that for some m ≥ 3 we have B(k) ≤ k!, whenever k ≤ m. We wish to
show the same holds of m + 1. we have

B(m + 1) =
m∑

i=0
B(i)

(
m

i

)
<

m∑
i=0

i!
(

m

i

)
, using the inductive assumption,

=
m∑

i=0

i!m!
i!(m− i)!

=
m∑

i=0

m!
(m− i)!

= m!
m∑

i=0

1
(m− i)! < m!(m + 1) = (m + 1)!.

Hence B(m + 1) < (m + 1)! as required. By induction the result therefore holds for all
n ≥ 3.
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B7 (a) A connected graph with n vertices is a tree if and only if it has n− 1 edges.
(b) Suppose T is a tree with n vertices. Then T is connected and has n − 1 edges.

Moreover T has no cycle. Now remove an edge e to form the graph T − e. This
graph still has no cycles. If it is connected then it must be a tree. However T has
n vertices and n− 2 edges so cannot be a tree: therefore it is not connected and e
is a bridge.

(c) (i) As T is a tree it has n vertices and n − 1 edges, for some integer n. Adding a
new edge we obtain a connected graph with n vertices and n edges. From the
result above this graph cannot be a tree. As it is connected it must, therefore,
contain a cycle.

(ii) If there is a path P from u to v then connected component of G containing u
contains all the edges and vertices of P and so contains v. Hence u and v are
in the same connected component, a contradiction.

(iii) As G contains no cycle we need only show that G is connected. Suppose that G
is not connected and that u and v are vertices of G lying in separate connected
components. Then there is no path from u to v in G. Add the new edge
e = {u, v} to G. Now, by assumption this new graph contains a cycle C. There
is no cycle in G so e must be an edge of C. Now removing e we leave a path in
G from u to v, a contradiction. Hence G is connected, as required.

(d) (i) Let F have m edges and connected components T1, . . . , Tk. Then Ti is a tree,
for all i. Suppose Ti has ni vertices and mi edges. Then mi = ni − 1, for all i.
Now n =

∑k
i=1 ni and

m =
k∑

i=1
mi =

k∑
i=1

(ni − 1) = (
k∑

i=1
ni)− k = n− k,

as required.
(ii) We must show that H contains no cycle. Suppose on the contrary that H

does have a cycle and let e be an edge of this cycle. Let H ′ be the connected
component of H containing e. Then H ′ is connected, using the given fact.
Hence H − e has k connected components n vertices and n − k − 1 edges. If
H−e has a cycle continue by removing an edge of a cycle and repeat this process
untill there are no cycles left and c edges have been removed from H . At this
stage we have a graph G with no cycles and so G is a forest. Moreover G has n
vertices k connected components and n− k − c edges. From the previous part
of the question we must have c = 0, so in fact H had no cycle and was a forest.
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B8 (a) As G is simple with n − 2 vertices, a vertex of G can have degree at most n − 3.
Thus

|E(G)| = 1
2

∑
v∈V (G)

deg(v) ≤ 1
2(n− 2)(n− 3) = 1

2(n2 − 5n + 6),

as required.
(b) A plane triangulation having the graph Q as a subgraph:

(i) Let F be a face of P of degree d. Place a new vertex vF inside F and add an
edge joining vF to each vertex of P which occurs in the boundary of F . This
cuts the face F up into d faces of degree 3.

(ii) Repeating the process described in the previous part of the solution, for each
face of P , we obtain a plane triangulation D which has P as a subgraph.

(iii) As G is a plane triangulation we have

2m =
∑

f a face

deg(f) = 3r,

where r is the number of faces of G. From Euler’s Theorem

2 = n−m + r = n−m + 2
3m = n− m

3 .

Therefore 6 = 3n−m, so m = 3n− 6.
(c) The following is a subdivison of K5: where the vertices of K5 are 1, 2, 3, 4 and 5. A

graph which has a subgraph isomporphic to a subdivision of K5 cannot be planar,
so this graph is non-planar.

1

2

34

5
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